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An observability problem for both deterministic and stochastic
systems is studied here.

- Deterministic observability is a determination of whether every
state of the system is connected to the observation mechanism and how
it is connected, if comnected. On the other hand, stochastic
observability discusses the "tightness” of the connection in terms of
the chosen statistical sense.

For the deterministic system observability two conditions,
connectedness and univalence, are obtained from modification of the
global implicit-function theorem. Depending on how the conditions are
satisfied observability is <classified in three categories;
observability in the strict sense, observability in the wide sense and
the unobservable case.

Two underwater tracking examples, the bearing-only-target (BOT)
problem described in the mixed-coordinave system, and an array SONAR
problem described in terms of a small number of sensors and various
measurement policies are analyzed.

For the stochastic system observability, an information theoretic
approach is introduced. The Shannon concepts of information are
considered instead of Fisher information. Computed here is the mutual
information between the state and the observation. Since this
quantity is expressed as an entropy difference between a priori and a

posteriori processes, two densities are required for computation. Due

......................................
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to the difficulty in solving the density equation, the second moment ‘-::

‘ approximation of the densities are considered here. Then, the mutual i.‘;a
information is used as a criterion to determine the '"degree of
observability."
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Information sensitivity with respect to various coordinate E-

‘:‘.1
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systems, including rectangular, modified polar and mixed coordinates W

Ty

are analyzed for the BOT system. In an array SONAR, a combination of
relative delay and Doppler measurements for up to three sensors are k- -v!

compared.
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OBSERVABILITY AND INFORMATION STRUCTURE

OF NONLINEAR SYSTEMS

CHAPTER 1: INTRODUCTION

A state space description is one way widely used to describe a
physical dynamic system in a mathematical model. Here every
individual state represents some property of the actual system
characteristics. So, to understand the nature of the system from
outside the dynamic model, one is required to observe or measure
necessary states. But, sometimes, it is not possible to access and
measure all of the necessary states from the ocutside. Even in case of
such possibility, it may be too expensive economically to measure
specific states. In this case, one thinks about another indirect way
instead of direct measuring at high cost or unmeasurable states, i.e.,
if one can somehow reconstruct every necessary state by utilization of
less expensive or measurable states only, then one might be satisfied.
Observability is a basic system study relevant to this subject. One
is interested, here, in determination of whether measured data is
enough to reconstruct all of the states. Importance of system
observability stems from another agpect. I.e., if the system is not
observable for some reason, then certain states which are estimated
from this insufficient information may be inaccurate and thus any

further action, for example, feedback control which is evaluated based

on inaccurate states may exhibit undesirable performance.
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If noise is involved in the description of system and/or
measurement dynamics then the observability concept is changed from
the above deterministic case. Here, one is more interested in "how
much” the system is observable in terms of a chosen probabilistic
sense, i.e., degree of observability rather than a "yes" or "no" type
answer. Of course, there are many different ways to measure the
degree of observability. Apparently, one way is using information
theory. Bere, evaluated is the quantity of common information, so
called, mutual information between the state X, and the observation
Vi and this quantity is used as a criterion to determine the degree
of observability, i.e., a calculation is made of the amount of
information about state Xy which is contained in the observation Yy

In Chapter Two, deterministic observability is studied. After
defining the problem, observability criteria for linear systems and
former results for nonlinear systems are summarized. Since, nonlinear
observability is a geometric functional structure problen, a
functional analytic approach is used. A modified version of the
global implicit function theorem is obtained from the result of Palais
(1]. To apply the modified version of this theorem in the nonlinear
observability problem, appropriate algebraic modification of the

observation equation is required. Thus two conditions, connectedness

and univalence, are derived. Depending on how the conditions are
satisfied, observability is <classified in three categories;
observability in the strict sense, observability in the wide sense and

the unobservable case. Two important applicaticnal examples are

-




QRS R IR R AR R A O A S TUA DA AJ St ShAa Rl R ade b S A, *) L0 iets Sl W Lt Al Sedbandt A O Ll A Lo B At ae

e TN

.,
LN

analyzed using the result. I.e., BOT tracking which is described in
the mixed-coordinate system, and an array SONAR with a small number of
- sensors and with various measurement policies are analyzed.

In Chapter Three, stochastic-system observability is studied
using an information-theoretical approach. The term "information" is

interpreted in the Shannon sense rather than the Fisher sense here.

So, information is not an abstract quantity but a substantial quantity ;;;;E
having appropriate units. With the basic definitions of information iffﬁf‘

and entropy concepts, mutual information is introduced and expressed %ﬁiﬂf
in terms of entropy difference, i.e., difference between unconditional
and conditional entropies. Since the evaluation of the mutual

information of stochastic processes requires more conditions than

simple random variables that is introduced wusing measure theory.
Under the proper conditions, entropy is expressed in terms of
estimation covariances. Therefore, the mutual information can be
obtained from two covariances -~ unconditional and conditional
covariances. Both can be obtained from an adopted filter algorithm.
But the non-Gaussian case generally requires knowledge of the
probability distribution or higher order moments. Here the second

moment approximations of the densities are considered.

A brief discussion on the relationship between deterministic and

* stochastic observability follows. A result on the relationship

g{ between the Fisher information and Shannon's mutual information is

s discussed.

[ ]

3

R I T T A O I S e S A S A A S SRS




Chapter Four shows simulation results of various practical
problems in view of observability and information structure. Followed
by a simple linear-system example is BOT tracking and array SONAR

problems which are analyzed in Chapter two.

Information structures of observable and unobservable cases for
all examples are compared with various parameter charges. Estimation
error analysis in terms of the contents of information is shown.

Chapter Five summarizes the results.
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Notation

o~

e s

The following notations will be used throughout:

o

R Euclidean n-dimensional space

S

L
.

{ []-11 Euclidean norm T

traA Trace of a matrix A

i‘ A* Conjugate transpose of matrix or vector A E
- .

(A" will be used when A is real)

A (t) n-th time derivative of A(t)

— Gradient vector of nonanticipative functionals

W

.
(S P

r"

Jacobian matrix of nonanticipative functionals

——
.

{

<< Absolute continuity or negligibly small

- Equivalence or approximated quantity é;:
(R,F,u) Corplete measure space

(Q,F,p) Complete probability space

Ft Sub -0 - algebra of F

[ Absolute value

x(t) Denotes dx e
at s

' x(t) Deterministic time variable of vector x. -~

X () Scalar quantity of x(t) AfE

o X, Stochastic time variable of vector x for a particular ;
» | L.
8 elementary event w e Q —
- S
an -
8
—_
e e e
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Notaticn (cont.)

E[xt]

Efx.]v,]

E[xtlF‘{]

PALN AP
AXS
Ld -
R

Scalar quantity of Xy

[
-,

Stochastic vector process

¥)

‘f't
»
ey
v

Expectation of Xy

.‘
ol

Conditional expectation with respect to a given measurement

Yy

Conditional expection with respect to a given sub-0 - algebra ‘tvfj

generated by {ys,ossﬁt} f::}:

Space of continuous functions

Closed interval

Open interval

a is an element of A

Covariance matrix

Probability distribution (probability density function when
not confused with distribution)

Probability density function

End of proof

f is restricted by U




P S L R e I R A I e el DRI L LA S Dl IR P A i i, B i s Sl ) o N N AR BN DR AN oy B0y 8l hin ‘2Rt ten Nl Nl | -.u-i
"
~

CHAPTER 2: OBSERVABILITY OF DETERMINISTIC NONLINEAR SYSTEMS

*
v,
(AKX,

2-1 The observability problem and former results.

5.
L"’

o
1, A .!,
A

Consider a mathematical description of physical dynamic system

which is expressed in the first-order vector differential equation

S S ) 'S
RN -
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——————— = f(x(t),u(t),t), (2-1)
dt
where x(t) is an n-dimensional state vector, u(t) is an r-dimensicnal
control input, and t is the time variable. Assume the dynamic
property of the system is known, i.e., an n-vector valued function
f(.) and uf(t) is known for t>t . Further assume that £(.)

satisfies the existence and uniquness conditions of the x(t), i.e.,

1. £{.) is continuous in t and once continucusly differentiable in x

and u for fixed t, te [0, =),

2. f(.) satisfies uniform Lipschitz condition on x.

2 o ~_f'
et (), =600, 01 <M |1 R - K], (2-2)
where ||.]|| is the Euclidean norm, M is a bounded real positive I;Zf.jljlj

constant. Under the above conditions one wants to know the time
trajectory of x(t) from (2-1). For this purpose one constructs an

integral operator g(.) such that

x(t)=g(x(t ) u(t),t). (2-3)
T e o i e P e T SO S N e e I
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But knowing the operator g(.) does not mean that, actually, one can
get the solution trajectory x(t) of (2-1) because the initial state
x(to) in (2-3) is not known. So, if one can somehow establish x(to),
then the problem will be solved. To establish the initial state
x(to), in practice, one might construct another equation known as a
"measurement"” or "observation" equation since there is no way to know
x(to) frem the system model equation (2-1) in itself. Using
appropriate measuring or observing devices, necessary state variables
or other variables are observed for some period of time, say [to,tl].
Then using the observed data, x(to) might be determined indirectly.

This obervation mechanism might be modelled mathematically as
y(t) = h(x(t),t), (2-4)

where h(.) is an m-dimensional vector function and ye:Rm. Here m is
not necessarily the same as n. Usually from the physical availability

anl economic point of view, m is less than n.

If (2-4) is uniquely solvable for x(t), then every state Xi(t)' :;,{;
i=1,2,...,n can be computed with only currently measured vy(t), i.e., i 5,
the information measured is in a sense complete. But if observed i;}:}
information is incomplete, i.e., (2-4) is not uniquely solvable for %ffT
x{(t), then there arises the problem of evaluating the state x{t) by ;:;i
some indirect method using state equation (2-1) as well as observation E:f::

equation (2-4).

The observability problem has been well investigated and the

result is clear for the linear system where the test of nonsingularity S
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of the observability matrix or equivalently rank test is enough.

But for the general nonlinear system these techniques are not
applicable, unfortunately, since even in case of nonsingular or full
rank cordition of the observability matrix, one cannot solve uniquely
x{t) fram (2-1) and {2-4). Thus x(to) can not be determined uniquely.
Before investigating this problem further,a summary of the former

results are made.

2.1.1 Former results on system observability

1. Linear system.

Consider the time-varying linear system

®(t) = A(t)x(t)+B(t)u(%), (2-5)

y(t) = C(t)x(t)+D(t)u(t), (2-6)

where matrices A(t), B(t), C(t), D(t) areknownnxn, nxr, m x n,
m X r, respectively and entries are continuous in t over (- @ , ® ),
Observability of the system (2-5), (2-6) is dealt with in the most
standard textbooks [2], [3].

First define the observability of the linear system (2-5), (2-6)

as follows:

Definition [3]

The system (2-5), (2-6) is completely observable at to if for any

x(to), there exists a finite t1>’co such that the knowledge of u(t) and

<

LN
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v(t), te [to,tll is sufficient to determine x(to).

From solution of (2-5), y(t) of (2-6) becomes

t
y(t) = C(O)d(t,t )x(t )+C(t) Jo(t,s)B(s)u(s)ds + D(t)u(t), (2-7)
%
El where ¢(.) is the transition matrix of the homogeneous part of (2-5). =
2 From (2-7) observability criterion is derived as [2]; i3;;
[

Criterion 1

The system (2-5), (2-6) is observable at to if and only if the

columns of the m x n matrix function C(t)¢(t,to) are linearly

independent on [t_,t,]. o

By multiplying ¢*(t,to)c*(t), integrating from to to t and tﬁiﬁ

retaining the zero input response of (2-7), Criterion 2 is obtained.

Criterion 2

The system (2-5), (2-6) is observable at t, if and only if the :jlﬁﬁ
S .
T
Grammian matrix N(.) N
P
t RO
N(t_,t)= S¢*(s,t_)C*(s)C(s)d(s,t )ds (2-8) AR
o ¢ o) o
o
is nonsingular. ‘

Another criterion which is more convenient to apply can be

derived from Criterion 1, i.e.,

........................
..............

........................




F(t) = C(t)¢(t,t°) , {2-9)
are linearly independent on [to,tl] if the matrix

(n-1)

vt = () F e e e, (2-10)

has rank n. Thus we have the third criterion.

Criterion 3

System is observable at to if and only if there exists a te {to,tl]

such that observability matrix

\
Q(t)
vV*(t) = Ql(t) , (2-11)
| Qe (t)
has rank n, where
d
Qk+1(t) = Qk(t)A(t) + ——Qk(t), k=0,1,...,n-1, (2-12)
dt

Qo(t) = C(t) .
For the time-invariant linear case the following observability
conditions are equivalent. The time-invariant linear system is,also,
observable at to in [0, » )} if one of the following conditions is

satisfied,

'.‘ .-', T .
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1) The colums of ceA are linearly independent on [0, » )

2) The colums of C(SI-A)—1 are linearly independent. S is Laplace

transform parameter.
tA*(s-t ) A(s-t )
3) N(t,,t) = e o’'C*Ce o'ds,
t
o

is nonsingular for any t°>o and t>t_.

o
4) The mn X n observability matrix
>‘.A r C 3
* ve = | ca? : (2-13)
| CAn—-l
has rank n.

2. Nonlinear system.

As known, the observability property of the general nonlinear
system is not a global nroperty,i.e.,an observable nonlinear system in

one time interval or one portion of state space may be uncbservable in
a different interval. In a geometric sense, a functional relation

between measurement space and state space might not be in one-to-one
correspondence such that the inverse function between the two spaces
is not uniquely defined globally even though it is so defined locally.

.................................
......................................................
.............................................................

................
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N Various authors have studied the nonlinear observability problem NN
in many ways. Extension of the linear system observability criteria
to the nonlinear case is attempted in [4], [5]. The observability
rank condition using Lie algebra [6], [7], [8] and Taylor series
expansion [9] are reviewed. As the observability problem is,
sometimes, called "an inverse problem," the inverse function theorem
in analysis is used widely. In this approach the Jacobian matrix of
the function which is related to the observation equation plays a

central role. [10] - [17] can be viewed in this category.
1) Linearization method
The nonlinear system and observation equations

x(t) = £(x(t),ult),t), (2-14)

it

y(t) hi{x(t),t), (2-15)

are linearized around some reference point, for example, the origin or
the equilibrium point or a proper operation point to study the
neighborhood property around them. Here, a linearized version of (2- ﬁlﬁf:

14), (2-15) is obtained as

§x(t) = Fox(t) + GSu(t), (2-16) "
: where -i°
» .
3

"e™ e =

ISR A L AL ST L P ST T . - . DR I S T N S S S Y L} -
R A S A L R S . S S W e AT e E
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n.. ‘t.hd
i F=3f | , o2
I X | x=x* 2
e '.;Q ‘
5 s=3Ll . o
-~ ju | u=u* tﬁxﬁ;
'-: v.\.$
7 A
. H=3h I R ‘t"__..
T 3 X | x=x* P
with x* a certain reference point. Lee and Markus[4] chooses x* to :;ﬂ
l be the origin under the null condition '
£(0,0,0) = 0, (2-18) .
oy h(0,0) = 0, (2-19)
‘. and applied the rank test to the system (2-16), (2-17). Hwang and

Seinfeld [5] extended the work of [4] to the arbitrary entire domain DN

of the initial condition.

2) Observability rank condition

A geometric approach using Lie Algebra for the continuous [6] or

’ -"‘ _fl_"l _'.v_"..'-'.‘.'

discrete [7] nonlinear system is studied. Define

3 h ‘
- Lei(h(x)) =55 f(x,ut,t), i=1, 2, ..., r,

where fi(x) = f(x(t),ui(t),t) and L. is closed under Lie algebra

!' - ' L-r—,
= L[fl'fZ](h) = Lfl(Lf2(h)) - LfZ(Lfl(h)) . .._.:::._-1

- Let g(x) be the set with elements consisting of a finite linear

combination of functions of the form

RO A

.
(AN

T, l-.’. “. &
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Li(e.... (Lk(h))..... ), k=1, 2, ..., m YV

The Lie differential dg(x) is, then a finite linear combination BN

dg(x) = {a(L1(....(LKk(h))...))}, \_ o

= {Lfl(....(Lfk(dh))...)). (2~-21)

|

The observability rank condition is satisfied if dg(x) in (2-21) has

i rank n. -

3) Taylor Series expansion [9] :::':. -:;

The Taylor series expansion of (2-15) about an initial condition

X(t ) =x at t_is
o o o

% AN
+ .. . .,
2

B Y(t) = y(t )4y (£)) Bt + y"(t,)

= 1) At
= Zo¥  (t— .
il (2-22)
Define the collection of all the coefficients of (2-22) to be Y such

that

v= 1y, 121202 0T,

KRV ETR A

RS
= H(x,). (2-23) RN
R
s P
- Then one-to-one relation of the function (2-23) is checked. In actual SR
- . u“‘-"‘.\
N . : (1) . : ‘e s : NS
° application vy (to) , 1 =1,2,... is checked if it is an even A
> » -\‘h\ b.
3 . B
g function in X N
) .
N .
: R
]
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4) Jacobian matrix approach

- Observation equation y(t) is differentiated with appropriate
. substitution according to the system equation (2-14) successively.

l Then the Jacobian matrix J(.) evaluated at X is analyzed as follows;

i) Rank test of determinant J (.) [10], [11]

or, equivalently nonzero of det J is tested [17].

" EEYS

ii) Ratio condition [13], [14], [15]
Ratio condition is satisfied if the absolute value of the leading
E principle minor of J(.) is greater than £>0, i.e.,
8,1 = |dety | >,
A
' 2 detJ2
| -
1 detJ1
An detJn
‘ = |l—— | >€ , (2-24)
! Bn-1 detJ .

where Ji is obtained by taking only the first i rows and columns of J.
Singh [14] checked the ratio condition for the matrix, AJ, where, A,

is an arbitrary, n x mk matrix for the k-th derivation of y(t) such

that mk > n.

iii) Positive semidefinite of AJ [13], [14], [16].

Again A is an arbitrary n ¥ mk matrix tomake AJ tobe n x n
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matrix. Then the system is said to be observable if one can find

matrix A such that AJ is positive semidefinite.

: iv) Minor matrix analysis of J [12].

\

l Minor matrix of J matrix J,, J,, ..., J,_, is corstructed. Then
for each Ji, an unobservable set Di is obtained as
Di = { x| Ji # 0, Ji+1 =01},1i=1, 2, ..., n-1. (2-25)

In spite of many results, it is found that some are

insufficient [9] - [11], [13], [14], or too complicated to apply in

j practice [12], or applicable for only special class of nonlinear
system such as in [18] or for linearized systems.

Introduced in the subsequent section is a new method which is

i simple to apply in practical problems and provides not only the test

| of observability of the system, but also, identifies the unobservable

states when the system is unobservable. This approach is based‘ on

i Palais' global implicit-function theorem [1] and its late versions
‘ {19], [20].

Modification of both the non-zero Jacobian condition and finite

) covering condition are required to be applied to the system

observability. A modified version of the global implicit-function

theorem 1is used in section three to demonstrate its simplicity and

i , effectiveness by providing various examples including tracking of a

| maneuvering target where only bearing information is extract from

the measurement and array SONAR tracking problem with a small number

b - of sensors.

....................
...............




2.2 A mcdified form of global implicit-function theorem

The most common inverse-function theorem guarantees only the
existence of a local inverse in terms of the nonzero determinant of
the Jacobian of the function f£(.). The implicit-function theorem is
an extension of this theorem to include argumented variables in it.
The global versions of these theorems are the global inverse - function
theorem and the global implicit-function theorem, respectively. Both
theorems, in a global sense, require nonzero det J(.) and finite-
covering conditions. It is shown here that both conditions can be
modified further to be sufficient conditions for f to be invertible
uniquely. I.e., without losing a global homeomcrphic property of £,
one can relax the nonzero Jacobian condition from the n dimensions to
the n-1 dimensions for the special structure of f. However,the finite-
covering condition needs to be added to the one-covering condition.
The modified version of the global implicit-function theorem then will
be used to determine the observability of the given nonlinear systen.
See Appendix A for the inverse and implicit function theorems and some
related definitions.

Global versions of the local inverse and implicit function
theorems are studied by several authors [25], [26], [27]. Here these
theorems are restated without proof which can be found from cited

references.
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Theorem 2-1 Global inverse function theorem N

Let £ be an n real function of n real variables. The necessary

and sufficient conditions that the function f:R" -> R© defined by o

f(x)=y, stn,yeRn
be a ct diffeomorphism of R onto itself are :{u:
i) each f,(x) is of class ct, ;?F:

ii) det Jf(x)#0,

iii) lim || £ || =, as || x || > > . -

Theorem 2-2 Global implicit function theorem o

Let f be a n real function of n + r real variables (n>1, r>1).

Consider the function f:Rnx Rr -> Rn such that

f(x,v)=y,

where Xan,veRr, ngn and f is C1 in x and v. Then there exists a .
unique C1 function such that -

g:RnXRr -> Rn,

if

i) det Jf(.) # O for all x and v, where J =3 £/3 x.

i) lim || f(xv) || = w, a8 || X || > »

“ -
s

. - T W

. i . . .
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Condition iii) in the Theorem 2-1 or condition ii) in the

Theorem 2-2 is called a "finite-covering” condition (see below).

Next it is shown that both the nonzero-Jacobian and the finite -
covering conditions of both theorems are not enough for f to be one-
to-one correspondence. Appropriate modification is required to
provide sufficient conditions. Before a discussion is presented the

following terms are defined.

Definitions [26], [31]

A cover for a set A is a collection v of sets such that A%eg
Let X and Y each be comnected spaces. If £f maps X onto ¥ with the
property that for each y €Y has an open neighborhood V such that each

component of uey, U = f—l(V) is mapped homeomorphically onto V by £,

then f is called a covering map. In this case if the cardinal number
is n, then f is an n-covering map. If n is finite, then it is a

finite-covering map, and if n=1, then it is a one-covering map |

Note that the finite covering condition excludes the possibility
that f oscillates infinitelyas || 2 || -> « . With the above
definitions, next *wo lemmas show that the homeomorphism of £ (at
least in a local sense) provides sufficiency for f to be a finite-

covering function. But, the converse is not true (See Example 2-1).
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Lemna 2-1 [27]

Let £:X | ->Y, X&:Rn, veR" be a local homeomorphism. A necessary
and sufficient condition that f be a finite covering is that
lim || £(xX) |] = o .
I x| => e
Lemma 2-2 [26}]
Let £:X|->Y, %eR", YeR"S. .If f is a homeomorphic function of R
onto itself, then
P-..;,,J
lim || £ (X) || = . b
X ] > e e
Example 2-1
Consider the two-dimensional function f which is given by
2o
f(x) =
2 2
2x1+4x2 -_:
Then S
Un| £ |] = 1m (2d) 2+ (220aD)?) = . ——
HRIT=> @ xQ4%3-> & e
Clearly the finite-covering condition is satisfied, but actual f:-_'.:“_-_:
i
solution of the two equations yields SR
2. 2 s
fl(x) = x1 + ¥y =¥y o -.::.
£ (x) = 2x° + ax® = ¥ e
2 1 2 2 ' _—
o
\'..
e e L L L e e T G R
BREPSTIIRES ) S S N IR IS NS NN ra At aNa gt g . I I '\J_‘.e_'c RIPIRPAC WL VL IR WAL WAk, g YA AL PR ‘.A'__-A.L-_!.A._‘.L..-L'. K
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with non-unique solutions

¥z \’ 4v,Y,
2

v -
”

-
- -
oLt 'I .

NP
Vol
T2

’

(3
f A

PN
L)
d

1 .
"n‘i’:‘“

e
0

v
g

-
,"I *y

X =2 \/ ¥,"2Y, bax s
_. bred
2 lt‘.:."

Thus f is only locally homeomorphic, i.e., f is not one-to-one

globally. Both %, and %, are covered by the two '"sheets" of cover.

2 However, the existence of the two independent solutions is guaranteed L
i% by a nonzero determinant of the Jacobian, s
e

nAing
.

g5
(]

det Jf(x) = x1 x2 # 0,

i.e., with X, # 0 and X, # 0.

From the above two lemmas and example, it is clear that the

finite-covering condition only provides a "weak" sufficient condition
for £ to be a homeomorphic function, globally. &FT

Even though the global functions have played a fundamental role

N
Y

e
L T I R

in many research works in nonlinear system studies, both the nonzero L
Jacobjan and the finite covering conditions are not enough to Sff
provide sufficient conditions for f to be one-to-one
correspondence. To discuss this more specifically next further

definitions are made.

.............
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Definition
An individual finction fi(x), i=1, 2, ..., nof f is called an
absolutely independent function if it consists of only one coordinate
of x, say xj. x.j is called an absolutely independent variable.

A nonzero Jacobian condition provides functional independency and
thus at most guarantees the existence of local inverses. But it does
not say how many inverses exist, including the possibility of an
infinte number which may appear when f involves trigonometric
functions.

On the other hand,a finite covering condition furnishes a little
narrower restriction to f than the nonzero Jacobian condition by
excluding an infinite covering passibility, but still allows multiple
coverings as well as functional dependence. So, we must modify both
conditions as follows. In case f has absolutely independent
functions, f£(.) can still hold functional independence even if
det Jf(.) = O as far as det Jf (.) # O, where f denotes the remaining
portion of f while deleting one absolutely independent function from
f. The next example shows that £ can be functionally independent, and
thus can have a global inverse in spite of det Jf(.) = O as far as det

JE (.) # 0.

Example 2-2
Let £:R° -> R° is defined by

T T T T T R Y W O R N N R N N N TR TN T T i i TR e e T e ey
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x3
1
= 3 =
f(x} = X, =y
Xy + X, + Xg
The function has a global inverse on R3 as
1/3
x, = (%,
_ 1/3
x2 = (Y2) [
o g 4173, 1/3
Hence f is a homeomorphic - onto function unless
= gulg? =
det Jf(x) = 9x1x2 =0,
by X, = 0 and X, = 0.
Det Jf(x) = O is allowed either by x1 = 0 or X, = 0 without
loosing functional independence. Note that both 3 and X, are

absolutely independent variables.

Thus the nonzero-Jacobian condition can be weakened to (n-1)
dimensions instead of n dimensions in the special form of f£.
Mearwhile a finite-covering condition must be modified to a one-
covering condition instead of finite-covering condition. But neither
one is not enough for f to be a globally homeomorphic function since
a nonzero-Jacobian condition alone lacks globallity of the inverse and
the one-covering condition alone lacks independency of £,
Consequently,we have the following adaptation of the previous

theorem.

--------

.......




Theorem 2-3
Let f:x ->y, =Xe Rn, Ye R” be an onto C1 function. £ is globally

homeomorphic % onto y if

i) detJf({x)# 0 for all x
(detJf (x)# O if f contains absolutely independent functions)

ii) f£(x) is a one-covering function for all x.

Proof
We need to prove that the two conditions mean =z global
homeomorphism of f. First, consider for the case when £ has no
absolutely independent functions. Then by the inverse function
theorem f is a local homeomorphism from x to y. So, by addition of

restriction U on f, (x) is one-to-one from onto y. Next if £

fIU
has some absolutely independent function, then detJf (x)# O prcvides a
local homeomorphism from x to y. The function f, which is excluded
from f is already independent from f ; thus fi is at least locally
homeomorphism from condition ii). So, f is  locally homeomorphic and
again restriction U exists such that f be one-to-one from U to v.
Hence if we can show that U=x, then proof will be completed. Suppose
U is a proper subset of x. Since U is open in x, U is an open proper
subset of x. Let X be a boundary point of U,and V be an open conrected
neighborhood of f(x ). Since f is a one-covering map on ¥, f-1 (V) is
not empty and consists of one component. Let Nx denote  this

component. Surely N, contains x . Let N* = Uﬂf‘l(V). Since f is
X X

continuous f”1 is open. Hence both Nx and N} are open and connected.

...........................
..........................
.........

..............
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3
N Also note that f maps both Ny and N% onto V.  Since N, is open and
i' contains x, the set N,\U is also not empty. t follows that N,M N} '
E is not empty, otherwise there will be at least one point X4 in
: Ny() U apoint xpin Ny such that f£(xp) = fix) e V, ad £, will
not be one-to-one on U which constitutes contradiction. Hence, N, =
? Ny, i.e., x is in N; and, therefore, is in U . This implies U can't
: be an open proper subset of x. That is U is closed in . So, U is
both open and closed in x and nonempty. Therefore U = . *x
Remarls
" 1. Globally hcmeomorphic from & to y is indentical *toc global one-to-
§ one correspondence and continuity [30].
2. Every homeocmorphic onto function is a covering map, and every
- covering map is locally homeomorphic.
4 3. Even a nonzero-Jacobian condition can be relaxed to n-1
dimensions. Here n dimensions will be assumed in the general

discussion since detJf# 0 always includes detJf # O.

Lemma 2-3
If every entry of the Jacobian J of f does not make any sign

change along the real line of =, then f is globally a onre-coverinrg

map.
Proof 3f1
. Entry Jij = , i,j =1, 2, ..., nis variation cf
- Ix
- 3
] function fi with respect to j~th direction of x. If fi dces not make

R e Lo e e - RS IT U B O e It TP ST S -
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any sign change due to xj, then fi is monotone in j-th direction,
i.e., fi is one-covering function with respect to xj. If every
function does not have any sign change in any direction, then f is

a one-covering function globally. =

In order to be a multiple-covering function in any direction, the
slope of a corresponding entry must be changed due to that direction.
Then the number of possible covers are one plus the number of sign
changes. The nonzero~-Jacobian condition may be caombined to constitute
one method to determine one-to-one correspondence of f. See Theorem

2-4 below.

Lemma 2-4
If the Jacobian J of f(x) is either positive or negative

definite for all x, then f(x) is a global one-covering map.

Proof
Proof for the part of the positive definite case is given in

[19]. Negative definite case can be proven similarily. **

In Lemma 2-4, the nonzero-Jacobian condition is already implied
hence not required here. A modified version of the global inverse
function theorem allows us to adopt the global implicit function

theorem as follows:

Theorem 2-4

Consider f:Xx xu =->y, xERn,uERr, yERn such that

....................
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f(x,a) =v.

Suppose f is C1 function in x and u. If f satisfies the

following two conditions,

i) det Jf(.)# 0 for all x.
ii) f(x,u) is a one-covering map on all x, then there exists a unique
continuous function g such that

x = g(y,u). (2-27)

Proof

~

Define a vector X and vector-valued function f as

A
X=(Xx
u

>
]
Hh>
[
Hh
"
E

u (2-28)

which maps Rn+r onto itself. Obsviously t  is continuously

differentiable with respect to % and its Jacobian matrix is

............................. . T N S
.......... PR Y @ T T T e ety
. . . At AL I
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]
-
o
w
h

0 I ' (2-29)

3 £
where Ir is an identity matrix with dimension r. Since— # O,
~ I x
If N
det (-<) # O from (2-29). Ard since f1 = f(x,u) is a one-covering
Ix

A A

u is also a one-covering map on u, f{x) is a one-

map on X, arnd f2
X

covering map on [xJ. Therefore by the Theorem 2-3, there exists &

u

globally continuous function g = £f1 such that

aly) = %, (2-30) RN

E
"

u

[x] = g(v)

= fgl(y.a)
gl (Y:u) ’ (2—31)
e e S e e e D T e T DT e
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for all vy eRn+r.

Take the first n equations from (2-31).
}{-_g(Ylu) ’ (2-32)

which is also a globally continuous function mapping from Rn+r into

R o

As shown a nonzzsro-Jacobian determinant guarantees the existence
of a local homeomorphic inverse, i.e., provides the "connectedness" of
every component of x to Y,the measurement space. But the connection
may not be necessarily unique. For this reason nonzero~Jacobian
condition will be <called "connectedness condition” in the
observability problem which will be discussed in the next section.

A one-covering condition, on the other hand, provides the
uniqueness of the connection globally. So, the one~covering contiion
will be called the "univalence condition" in the observability
problem. Heuristiclly, Theorem 2-4 says that the mapping (2-26) is a
one-to-one correspondence globally if every Xy i=1, 2, ..., ncan
be expressed uniquely in terms of only Y and u for all x.

With this background about the nonlinear functions, observability

of nonlinear systems is studied next.

2-3. Observability of Nonlinear systems

State and observation equations are given, again, as

x(t) = f(x(t),u(t),t), (2-33)
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y(t) = h(x(t),t). (2-34)

As assumed earlier f(.) satisfies necessary conditions to
guarantee the existence and uniqueness of the solution x(t). Further
it is assumed that h(.) is differentiable up to (n-1)-th order with

respect to t. Then, define system observability as follows.

Definition

System (2~33), (2-34) is observable at tU if knowledge of the
input u(t) and the output y(t), ¢t g[to,tl] is sufficient to detemmine

x(to) uniquely for finite t If every state x(t) €R" is observable

1
on the time interval [to,tll, then the system is

completely cbservable.

Note here that due +to the assumption of the existence and
uniqueness of the solution in (2-33), x(t) can be uniquely determined

from proper construction of the integral operator g(.) as in (2-3)
i x(t) = g(X(to), u(t),t), (2-3)

once x(to) is known.
So, the definition of the x(to)—observability above implies,
also, x(t)-observability for the considered time interval te [to,tl].
Next, to derive more definitions on the system, differentiates
(2-34) with respect to t and makes appropriate substitution (2-33)

(with suppression t in the variables)

--------------------
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y = h{x,t) .,
y'=_3_h + ohdx = h, +ht,
at 3x 9t
= hl(x,u,t)
Y"= + = + + u' ,
9t 3x It 3Ju It 1t 1x lu
= hz(x,u,u',t)
(n-1)_ _ (n-2)
Y —h(n—z)t+h(n—2)xf + h(n—2)ug'+""'+h(n—2)u(n 3)u
=h (x,u,u',...,u(n-z),t) , (2-35)

n-1

where y(l} denotes i-th time derivatives of y(t).

Define an mn-dimensional vector Y, measurement vector of the system

(2-33), (2-34) as the left hand side of (2-35), i.e.,
-1).T
Y=[y.y'. ¥ o ,y(n )] ) (2-36)

and an mn~dimensional function H(.), measurement function of (2-35)

as

H(.) = [hhy,hy, ..., RIS (2-37)

Then one obtains an mn-functional relation in vector form

Y = H(x,v.t) ., (2-38)

where v(t) is a function u(l), i=1,2,...,n-2.
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From equaticn (2-38) next can be proved.

Theorem 2-5
If every state x(to) is uniquely determined from (2-38), then the

system (2-33), (2-34) is observable at to'

Proof
The proof will be completed if one can show that the unique
determination of every state x(to) from (2-38) is equivalent to that
every state is uniquely determined from the measurement vy{t), te
[to,tl].
Let us expand the function y{(t) in a Taylor series for anyte

[to,tl] at tO

Yit) = ylt )+y' (£ ) (E=t )+0.5y" (£ ) (t=t )2+, ...+
1 (n-1) 4 D1 -
E;:T;!Y (to)(t to) + r(t) . {2-39)

Since the Taylor-series expansion of an arbitrary function is unique,

each coefficient y(l)(to), i=1, 2, ..., n-1 is also unique. So,

once vy(t) is determined, then y(i)(to) is determined wuniquely. f;ﬁﬁ
However, each coefficient of (2-39) is an exact element of the
measurement vector Y in (2-38). Therefore, if x(to) is uniquely
solveable in terms of Y, V and t in (2-38), then the system is -{f;

observable at tg by the definition. *x .

Thus, the observability problem of the system is equivalent to

find the condition under which (2-38) has a unique inverse about state ;f*f:




34

x(t). Or geometrically, the system is observable if the mapping (2-
38) is one-to-one from the state space x sRn into or onto the

measurement space YeR’m for all te [to,tll. (See Figure 1.)

Yio

ym(n-l)o cheeae @ ym(n-l

state space measurement space

Figure 1, Geometric interpretation of system
observability

So, from the functional analysis results of the previous section

and Theorem 2-5, tha system is observable if the following two 1;23;':‘-:-2

conditions are satisfied.

1. Connectedness

Every state Xy i=1, 2, ..., nmst be connected to any

elements of measurement space VY, i.e., (2-38) constitutes n

.....
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} independent function with respect to x in time interval te [to,tll. ii
4

: 2. Univalence %;;i
Eg Further, every state Ry i=1, 2, ..., nmst be connected §§§§
- uniquely to the measurement space Y. :'-“;3'

2 As mentioned earlier, the first condition is related to the

' Sa'y

functional independency and thus nonzero Jacobian condition of (2-38)
and the second condition is related to the one-covering condition.
Before applying Theorem 2-4 it is required to rearrange (2-38) to
reduce computational complexity as follows. This procedure helps to
maximize the functional independence before applying the non-zero
Jacobian condition by deleting functionally dependent elements from

the mn functicnal H.

¥ = h(x,t), (2-40) b

y' = h,(x,u,t). (2-41)

By appropriate replacment of hl(.) by h(.) one can obtain

o y' = h, (v.xut). (2-42)

Repeating this procedure up to (n-1)th order gives .

LI '
Y h, (v.¥y'.xuu',t),

- y =h_, vy oy Py (2-43)

Denote Y the set consisting of RO
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Y o=yt (2-44)
and
V = (u,u',u",....,u(n-z)) . (2-45)
Then the vector notation of (2-42), (2-43) becomes
Y =H(Y .xV.t) . (2-46)

Successive replacement of lower order derivatives to the higher order
derivatives as in(2-43) means minimizing functional dependence between

the individual functional elements h, hl’ .... h since the procedure

n-1

is exactly the same as the successive elimination of unknown variables
in solving (2-38) for x. Thus maximun independence between functional

elements is obtained. Next let

p= (Y, Vt),
then (2-46) becomes

Y = Ha(x,p). (2-47)
with (2-47) and Theorem 2-4 determination of the system observability
can be made using the following result.

Main Result

System (2-33), 2-34) is observable (in the strict sense) if (2-

47) satisfies the following two conditions for all te¢ [to,tlj.
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i) Connectedness condition

det m’;(.) #£0, (2-48)

3

where JH2=3—H;, and H: is any subset of H, consisting of n functions.
X

ii) Univalence condition

Forthechosenl-!:(.) ,everystatexi,i=1, 2, ..., ncan be

uniquely expressed in terms of only Y and p.

The assertation is ocbvious from the Theorem 2-4 and 2-5. Actual
proof is similar to the proof of the Theorem 2-4.
Depending on the satisfaction of the conditions i) and/or ii) of

the result, define and categorize system observability as follows:

1. Observable in the strict sense.

Both of the two conditions are satisfied for at least one

cambination of H: out of mn function Ha'

2. Observable in the wide sense,

Only the connectedness condition is satisfied for any one or more
states, i.e, multiple covering appears in any component of x for any
time t.

3. Unobservable
One ore more camponents of x cannot be expressed in terms of Y
ard P. In this case these states are uncomnected to Y ard thus the

system is unobservable.
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The above observability determination is demonstrated by the

following examples.

Example 2-3
A falling body in the constant gravity field with position
variable X, and velocity X, can be expressed as

;:2 = —q, g is constant,

If one measures position Xy, then

Yy =x,, and
Yl

1’
= x

1= %

2
So, both states are uniquely determined from Y = (y, y')T, and hence

the system is observable. On the other hand if velocity X, is

measured, then

=X,

N

Y
y' =%, = g.

Only X, is connected uniquely to Y. %, is disconnected and

unobservable; hence the system is unobervable. Classic rank test can
be used to verify this.
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Example 2-4

s %
a4

h]
.
>
A

Tk

e
H

1 x1+u,

".
N

r{:: “l
LA

e
i

2 2x1 -x2+3x3+2u ’

.
X, = X

+

T8 T

3 1

-
S
4
i
[TV,

2x2+x3 . o

]
[}

then

[, -

Y 4X1 2x2+7x3+2u,
"= =

A 2x2+x3 Y.

Only X,, X, can be obtained uniquely if Xy is given, i.e., X, is

unobservable. Decoupling procedures show that X, is unobservable.

Example 2-5

A gyrocompass precessional motion is descrived as [17]

a>0, b=a(l-p ), 0<p<1 ,

Y=, . then (2-49) .
! — - AL
Yy —ax2+bxa, (2-50)

y'"'= -acy - ady3 - bF(x2+x3) . (2-51)

det J = bF(b-a) # O. (2-52) R
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From (2-49) ~ (2-51)

7Y,

X,= = (acy+ady +Ry ' +y")
F(b-a) '

Xg= be’+a(acy+ady3+Y")
bF(b-a) ,

Clearly, all the states are observable from the last three equations.

So, the system is observable.

Example 2-6 [3],[13]

R TRo¥%ge

X2=‘X1X3 '

X,=0.
Y=, then (2-53) -

] -—
Y TR Ka, (2~54)
L. 2 = = 2 -
¥'=x %, ¥¥,- (2-55)

So, det J = 2x1x§# 0 implies that the initial state of the form
{x10¢ 0,x30¢ 0) satisfies the connectedness condition. But from (2~

53) to (2-55),

L T N N I .

I S R SO0 ~

Pt ettt e - . R OISR R SIS v
- - L] R YA

e . A

A T N S L S B ct . .\;‘.' .
- ) N T L T e T s
CTat e . LR SR "o DT Y PR BT [

RIS S S B N L ek S P AT R, T S  RPRI W P TR T I ) N s ool

L S P




A I R A A R A N 0 1 e st S S, il S wlh T Rl A i 0 B B e et b

.....................

)
41
X, and Xy have multiple expressions or two covers. So, the univalence
i condition is not satisfied. The system is only observable in the wide
sense if {xlo # 0, Xa0 #0}.
i Example 2-7 [12]
3
* =
i :’{2=-2x1—3x2 % Xq,
Kg=Hg%y
: 4= 0
| ¥, . (2-56)
- So,
] y'=x,, (2-57)
> y'=-2x, -3%,-K0K, = ~2y-3y'-y°x (2-58)
- 17727173 3’
) g1 =2y ' -3y"-3y°y X, 4y K X (2-59)
X 37 7374
det J = -y6x3 = —x?x3 # 0 implies the connectedness is satisfied
1 when (X, # O, X, #0}. Here, note that (2-56), (2-57) are
absolutely independent functions. So, det J=0 is allowed as far as
det J # 0, where J is the Jacobian after deleting any oneé of the
P. : two absolutely independent functions. In this case only
= y! =
X0 =Y (to) 0.
S is allowed since x,,= 0 makes det J =O0..
]

............................................................
.....................................
.........
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From (2-56) ~ (2-59)
X=Y,
x2=y',
Xy=-(2y+3y'+y")

3
Y ’

X4=_(2Yl+3yll+yl 1 I) + 3Yv

2y+3y'+y’ Y

Obviously, the univalence condition is satisfied. So, the system is
observable if {xlo # 0, XSO # 0} is preserved.
Two practically more important examples are shown in the next

section which will be used also for stochastic system observability.

2-4 BOT and array SONAR tracking examples

System observability determination of two important examples in
underwater  tracking are demonstrated here. The first example is a
bearing-only-target tracking problem where only bearing information of
the target is extracted from the measurement device and used to
determine the observability of the other state variables as well as
whole system observability.

Consider an object or target (T) and observer or ownship (0)
configuration as in Figure 2. When T and/or 0 move with velocity

components v, , relative coordinates x(t) and y(t)

’ V ’ V ’
Ty = Ox ' 'Oy

can be generated as

..................................
............................................................
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Figure 2, BOT configuration




x(t)

xT(t)-xo(t).
YT(t)‘YO(t)-

y(t)

Define the state variables in mixed coordinates which consists of

mixed components of polar and rectangular coordinate as

x, ()= B(t),
xz(t)= r(t),
x3(t)='VTX(t)-vOX(t) = vx(t).
®, (Y)= Vw(t)‘VOy(t’ = vy(t).

where 8(t) is bearing of T

North N here, and r(t) is range. Then from the relations

x(t)

r(t)sin B(t),

y(t) = r(t)cos B(t),

and their derivatives with proper algebra,

coordinate system becomes

x3smx1 + X4COSX1

a
X

x(t) =

a '
\ Y /

where ax(t), ay(t) are accelerations in their directions.

bearing measurement the observation equation is

...........................
.........

.....................
PPN WA AR S0 YO W WA W T A P SR P S A P O ST I P

from O with respect to some reference,

the state equation in this

Due to
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(2-60)

(2-61)

(2-62)
(2-63)
(2-64)

2-65)

(2-66)

(2-67)

(2-68)
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y(t) = [1 0 0] 0]x(t) . (2-63)

To make the system simpler, it is assumed that ax(t) = 0, ay(t) = a(t)
# 0 in (2-68), i.e., maneuvering exists only in x-direction. Then

successive replacements yield
y = x, {2-70)

xscosy-x4siny
y' = ) (2-71)

%5

—(a.siny+2y'cosy.x4+2y'siny.x3)
y" = ) (2-72)

%y

3ay'cosy+[3y"siny+2(y)zcosy]x3+[3y"cosy—2(y')2siny]x4+a'siny

ylu = .
X
2 (2-73)

So, from (2-70)~-(2-73)

X = y’ (2‘74)

—2y’x4-acosy.siny
X, = ‘ (2~75)

y'"cosy+2{y')2siny

[y"siny—Z(y’)zcosy]x4—ay'siny
X, = ) (2-76)

y"cosy+2(y')2siny
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2
a[4(y')3cosysiny+6y'y"coszy-ay'y"—y'"cosysiny]+a’siny[y"cosy+2y') siny]

4

%4

2y'y" ' -3(y") 2+4(y" )4
 (2-77)

From (2-77) it is clear that x4

Y and it is unique when a(t) and/or a'(t) are nonzero, 1i.e.,

is conmnected to the measurment wvector

maneuvering exists. This implies from (2-75) and (2-76) that x, and

2
X, are also uniquely connected to Y. So, the system satifies the
connectedness condition if T and/or 0 maneuver. But when a(t) = 0,
a'(t) =0, i.e., when non-maneuvering, (2-77) says that :z, is not

4
connected to Y and is unobservable. This causes again from (2-75) and

(2-76) that x X, are disconnected from Y, and thus these states are

2" 73
unobservable from Y. Only %, is observable ,in this case,which is
itself a measurement variable. After lengthy computation, the

determinant of the Jacobian becomes

—2a'y'siny+3a[2(y')2cosy+y"siny]—[12y'y"siny(1+coszy)+

det J =

X4
2
3 3 . 2 "t
8cos y(y') ]x3+4y'cosy51ny[2(y') cosy+3y SJ.ny]x4 (2-78)
From (2-78) the system is unobservable with det J = 0 for the

following cases:

1. Infinite range, X, = ©

2. Non—-maneuvering, x3 = X, = 0 with a(t) = a'(t) = 0

(Including parallel stationary movement and tail

chasing.),

..............................

........
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3. Zero heading rate and acceleration, B'(t) =B"(t) = O,
4. Constant range with special heading such that
6 af B')2
tanf = —— . (2-79)
2a' g'-3ap"
As well as certain others, the system is unobservable due to the Jlack

of rank when any one or more conditions of above are satisfied.

Consequently, from (2-74)-(2-78), it is shown again that for BEOT
tracking, the system is observable only when maneeuvering exists.

The second applicational example is the underwater SONAR tracking ;ffs
problem where the number of sensors, deployment and measurement

schemes are changed. For good system observability, the number of

sensors and their configuration are very important. Further, with the RN

same number of sensors and the same deployment structures, measurement

policy is even more important for many cases. One can measure

absolute wave-propagation time-~delay between the target and sensor or poo
time delay difference between the two sensors, Doppler or Doppler &t:?
difference or any combination thereof. Each of these measurement .é
policies requires different observability analysis. Deployment can be 2

considered as either horizontal (towed linear array) or vertical to
the surface (vertically planted array). Figure 3 shows sensor and
target configuration for up to three sensors which are deployed

vertically. Only directly propagated wave is considered here. In the

one-sensor case, only absolute time delay or absolute Doppler shift

between T and 32 can be measured. It implies that synchronization of R

. .
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Figure 3 , Sensor configuration

Surface

Sea floor

l). One-sensor

2). Two-sensor
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T and S, is required for the passive case or can be used for only EESE
active SONAR case. T

In two-sensor measurement, either absolute quantities or oo
comparative differencies of intersensor delay and/or Doppler can be :t{_

-l
measured. -

Here it is assumed that three measurement policies occur .

1. One relative delay; 2S1D e
2. One relative Dopple:; 2S1P

3. One relative delay and Doppler; 2S1D1P

In the three-sensor deployment, several possible measurements are

considered as follows:

1. Two relative delay; 3S2D

2. Three relative delay; 3S3D
3. Two relative delay and one Doppler; 3S2D1P
»

Of course, more than three sensors can be considered. But it is .
known that [68] for optimal range and bearing estimation in senseof a -
minimum uncertainty ellipse, the best array configuration of M sensors ;;?:
is three groups of M/3 sensors each with equal spacing between groups. T
In this case, all sensors in a "pod" are assumed to be in the same ;£“
location, i.e., there is no delay between sensors in the same group. 3
Equally spaced M sensors showed much inferior performance than the ‘ ?7h?
three clusters of M/3 sensors except M *° .So,the number of sensors i:f
considered here are limited up to three. . e

...............................................................
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In a two—dimensional coordinate system, at least four states are
required to describe the motion of the point target - two for position
and two for velocity in each direction, respectively. Since sound

speed varies quite significantly with depth, salinity, temperature -

specially in coastal inlets [64], [69], [70] it affects the time delay _':..:.:{...

and the Doppler shift. So, it is considered as a state variable,

also. ;::

3 N
. I.e., define the state variables as followe: j-'f:,:i:i
f %, is target position in x-direction,
E %, is target velocity in x-direction, ;_‘ ‘_
s x, is target position in y-direction,
x, is target velocity in y-direction,

Xg is C1 (accoustic wave speed in Rl) ’ ‘W

X is c, (accoustic wave speed in R2) . 2

With the above state the system equations can be written as [___

(under the assumption of constant wave speed in depth)

0 1 60 o0 O ©
. o 0 0 O o0 o o
x(t)y =10 O 1 0 0 0O [ =x(t). {2-80) -
o ¢ o0 o 0 ¢ i
0 0 o 0 o © .
6 o o0 o0 o 0 .
The basic measured quantities are time delay difference tij
between sensors i and j, and Doppler frequency shift difference fij
from carrier frequency fc = 3500 Hz, which seems widely used in ".,7_

...... L T T S
........... RIS AL SN T N ST |




practical SONAR systems

Doppler shift is measured with three sensors (3S2D1P), the observation

equation becomes

y(t) = [x1,,(¢)
f12(t)

R, (t)
= fc{_z_
C, (%)

o ,.2..2.1/2
= (x1+x3)

. So,

ik

¢, (¥)

t) RS(t)

fc (x1x2+x3x4)

52

for example,

}

fc(xlx2 - (xa—zz)x4)

2
Xg (:i:1 + x

2. .2.1/2
(x1+x3)

= h(x(t), £,

2,1/2
3)

ca)l

xs(xf +(x3 - 22)2)1/2 ’

(2-81)

where surface sound speed C3 .s assumed to be a known value.

if two delay and one
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. The other cases of measurement equations have a similar form
except measuring different quantities. Therefore, in all cases, the
system equations are simple linear equations if nonlinear drag, etc.,
are neglected. But the observation equations are nonlinear.

To oberve deterministic observability for this system, categorize

the measurement scheme into three groups for convenience as

1. An absolute delay; 1S1D b

2. Pure relative delay; 251D, 3S2D, 3S3D v

3. Relative Doppler; 2S1P, 2S1D1P, 3S2DI1P

The first case for an absolute time propagation delay of the
acoustic wave with one-sensor deployment gives the observation

equation as

R, (t)

2(
C, ()

y(t) = (2~-82)

Considering system equation (2-80) and the relation {with

omission of time variable t)

2 2.1/2
(x1 + xa) ,

2]
1

2 T ¥1¥o ¥y

R {2-83) f

)
]

Then, by algebraic manipulation R
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== : (2-84)

=22 31 (2-85)

|
-

Y" = - . (2-86)

Let

X
[¢)]

2y
[\»]

<

(y")

Yy

= 2(y|)2 - qu

oo}
|

then, C S

—y'(xg + xi) e
y"' = -——2_ - A' P (4."87) .V
R, ;

(%2 + x)B
g o= 24 (2-88)
Rzy

2 Sl
4 (YB' - 3BY' ) — A" 1 . (2_89) ,...,i.‘_»

2
(x2 + X

«S) =

2
RoY,

-

From (2-84)-(2-89), it is clear even before solving them for x that x5

- -

does not appear in any equation, explicitly. So, Xg is not connected .
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to the measurement vector Y,

Y=Y, ¥, cevee Y(s)}

Obviously Xy is unobservable, and makes the system unocbservable
deterministically. Actual solution of these equations shows that
other variables have multiple solutions, i.e., they are connected to Y
multiply, thus they are observable at least in a wide sense.

In the second case when pure relative delay is measured as in

2S1D, for example, then

Y="T, -
R R
2 1
o+ DV e w272
= - , (2-90)
Xg Xy
xlx2 + x3x4 xlx2 + (x3 - 22)x4
y' = - ) (2-91)
%gRy %gR,

Continuation up to (n-1)th order derivatives shows that the results

are almost identical to the first case except Xg appears in the
expressions. It implies immediately that all the states are

observable at least in a wide sense. When adding more measurements by

addition of more sensors like 3S2D or 353D, the system becomes more

«

Vet

4 H, [N
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observable due to increasing the possibility of uniqueness of the
! solution in terms of state x.

In the last case when the measurement equations include Doppler

shift as in 2S1P, 2S1D1P or 3S2D1P shows very interesting results.

For example when observing one Doppler shift in a two-sensor

deployment (2S1P)

e -
M Y =1£,0
F R

=f = -1,
. C C
I 2 1
- (xlxz + KX, _ XXy + (Xy - 22)x4)
." c r
- ¥gRy XgRy
= ! -
N
- where y]') is the time differentiation of the delay (2-91).
. Continuation gives

| I "
) Yy = fCYD ’

" et

v'=£fyy''

) (58)"_ (6) _
4 W% = fcyD . (2-93)

Doppler measurement is just scaling up of one step higher delay

) differentiation with scaling factor fc. However, as discussed earlier

......................................
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the 2S1D system itself is already observable (at least in a wide

sense) . So, this system is also observable in the same context. The
same argument can be applied for the 2S1DIP or 3S2D1P measurement
cases, also. Thus the Doppler measurement system is observable
deterministically as far as a delay measurement system is observable.
Of course, a scaling factor influences the magnitude of the
information obtained from the measurement. The effect of this will be
discussed in Chapter Four where information structures of the various

measurement schemes are analyzed.
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CHAPTER 3: INFORMATION-THEORETIC OBSERVABILITY Ry

OF STOCHASTIC SYSTEMS : Tl

3-1. Introduction to information theory A

Involvement of the noises in the stochastic system description
wakes it very difficult to extend the deterministic system
observability condition to apply in the stochastic system case. A r‘“‘
"ves”" or "no" type answer to the observability question has 1little
meaning in this case. Attempts on this problem must be interpreted in

a probabilistic sense.

Contrary to the former results [34]-[39] where Fisher information ‘ ﬁi‘;_;l_
is mainly used to study the stochastic observability, here Shannon :
information is utilized instead. Specifically, mutual information is
carmputed and used as a criterion to determine the degree of

observability of any states or whole system.

Information theory has two general orientations: one developed
by Wiener and another by Shannon. Although both Wiener and Shannon

shared a common probabilistic basis, there is some distinction between

them. The significance of Wiener's work is that, if a signal is
corrupted by some noises, then it is attempted to recover the signal

from the corrupted cne. It is for this purpose that Wiener orignated

optimum filtering theory. However, Shannon's work goes to the next
step. He showed that the signal can be transferred optimally provided
it is properly formed. That is, the signal to be transferred can be

processed before and after sending to counter the disturbance and to
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be recovered properly at the destination. For this purpose, Shannon
developed the theories of information measure, channel capacity,
coding processors, and so on.
i To define the information measure, consider the simple
information channel Figure 4 and assume that Xy is an input event and
Yj is a corresponding output event, i =1, 2, ..., n, j=1, 2, ...,m.
Now define a measure of the amount of information provided by the
output (or measurement) yj about the input X;- It is not difficult to
expect that the transmission of X4 through the noisy channel causes a
change in the probablility of X4 from an a priori p(xi) to an a
posteriori p(xilyj). In measuring this change, take the logarithmic
- ratio of the two probabilities. It turns out to be appropriate for
ﬁ the definition of information measure which is suggested first by
Hartley [40]. Il.e., the amount of information provided by y:j about x

can be defined as [40], [41].

noise source

X={x.) . ] Y{Yj }
—tpl information channel p—

Figure 4, Input-output block diagram for
information channel

.............................................
....................
..........
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I(x., ¥:) = lcg
2
b p(%,)
plx;lyy)
= logyq
p(x;)
p(x;|y.)
= 1n 2 J | nats. (3-1) o
p(x;) *_‘_
{3-1) is defined by Shannon and used as a measure of mutual ;f

information between event x; and y.. If p(X;] y.) =1 RN
v S RN

, - w
I(Xil }j) I(‘<ill

= 1n (1/p(x;)) = -Inp(x,). (2-2)
f (3-2) is called self information. If (3-2) is true for all i, then
ii the channel is noiseless. Averaged amount of informaticn which is

- represented by H(x)

n
H(x) =2 plx)1(x;)
i=1

n
= - I p(x;)Inp(x,), (3-3)
i=1

has been, traditionally, called "information entropy,”"” or Jjust

"entropy" of <X. In statistical thermodynamics H is a mreasure of

"disorder" or T"uncertainty." Boltzmann showed [42] that ian an

isolated thermodynamic system H coulé never decrease, i.e.,the system

tends to its maximum disorder. To decrease the entropy, cre must add
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information to it either by transferring entrogy out of the systen =

boundary or by making observation (measurement). Here we are

AR -~
T

"-'L\:
- interested in the latter method.I.e., to decrease the uncertainty of :~:~:?,‘~
B ,'\:_"h;
: the general stochastic system, measurement will be made and observe - o8

the decreased amount of uncertainty, and thus will use this quantity

i ”
e e

KR AR 3
LN 3
R B -

as a test criterion of the observability of the system.For an n random

vector X with continuous prozability density p(xz) with =natural

logarithm base, H(x) becores h.__-.'
: 1 l;::."_i:
L H(x) ==/ p(x)In — ax ,
< ) ' -
3 p(x)
-,
h
- = - fxp(x)lnp(x)dx ,
where E is expectation operator. ]
Another quantity of information content which is commonly used is _
the Fisher informatior. For the same x and density p(x), Fisher :
information is defined as [43]-[47] and [66]. =
3%1np(x) B
J(xj = - [ p(x)——p— dx,
3 ¥dx
Anp(x} 3 1lnp(x) T 5
= fyp(x)( ) ( ) e, -
. EI 3 x
1 3p(H) 3p(x) o
= I, ( X ) dx. (3-5; R
p(x) 3 3 X
NN '-‘-';";3";5?'-'; P RO PPN SN ol e PO A WO
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:?-j Algebraic identity

- Inp(a) 1 3.(a) =

o - : ' =

':‘: a p(a) a a :-,,~

c was used in the last equality of (3-5). More compactly (3-5) becomes ';

5

3%1np(x) :

J(x) = -E[ T 1.,

‘ 9x 9 x

- Ynp(x) Ilnp(x) .

= = E[( ) ( )71 (3-6)

L d x Ix

From the two definitions (3-4) and (3-5) above, it is clear that the . P

ﬁ Fisher information J is a nxn matrix quantity and that the Shannon tzi o

g

j information H is a scalar valued quanitity. The general relation - ,‘”"
between these two information concepts will be discussed briefly \"

'P later. However, immediate comparison of (3-4), (3-5) shows that a :ﬁ:jfﬁ:'_:f

P

" simple relation can be derived if a specific density p(x) is given for h

any random variable x. For example, a scalar random variable X with AN

e

;b Gaussian density having 2zero mean and variance 02 has a Fisher _'j:' -

' information
3 21np(x) 1
J(x) = —E[——z"'—] = —2
dx o

Meanwhile its entropy is

H(X) = -E[1np(X)] = 1/21n(270 ?).

...................................
.........................................
...........................................
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So, from (3-7}, {3-8) cre can get the relation
dH(x )
2 = 1/27(x) . (3-9)
d(o)
Generalization of this relation can be found in {43] and [44]. Eﬁwﬁ;

Appendix B shows that the maximum entropy density funcitcn varies

depending on the constraints which are added to the Jdensity p(x).

The Gaussian density has maximum entropy wnder the given wean and
variance condition when X ranges frcm -« %o +®

Eg It is known that [48, and from private communicaticn with R.W.
L Hamming, Naval Postgraduate School, March 1985] entropy of  commonly

used random variables H(%) and its variance oi-have one-to-one relatioc-

H(x) = 1/2 ln(Acﬁ), 13-10)

if the density and expectation of X exist. So , for example, the
inverse~Gaussian or Cauchy density does not have the relation (2-10;
due to nonexistence of mean and variance expressions. Constant & is
determined once density is kmown. A ='2ﬁe for Gaussian case, for
exzample, from (3-8).

Table 1 shows this relationship for some comronly used densities

(48].




€4

Table 1. Entropy-variance relationship

Bistribution PAf p(X) Ccnst. 2
1 xz
Gaussian V——-— exp(- -—-5) 2T e(~17.079456)
2w a 2a
Uniform l/a; —a/2<x < a/2 12,
Triangular a+ a2x; -l/a<a <0 6e (716.30968)
Exponential ae 3% | x> 0 e? (~7.38904€)
Double Exponential 1/2 ae o1*| 262 (~14.778092)
2 H+2
X X €
Rayleigh —5 exp(-—3) (~15.331182)
a 2a 4 -T
an+1xn.e—ax (n!)2 n
Poission ; x>0 exp[2+2n(u+1- £1/1)]
n! ;) n>1 n+1 i=1

(15.98307 for n = 10)

Euler Const. = 1im (1 + 1/2 + 1/3 +... + 1/n - In(n))
n* o

=0.577215664

3-2. The concept of mutual information.

Calculation of the amount of the information about one random

function contained in another random function, so called mutual
information, has many important applications. In commmicaticn this

concept is used to detect or decode a transmitted signal from a noise

...................................
...............................
........
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contaminated received signal [41], [49], [50].  The extended RO

»

application of <the matual information to a more deneral system to
identify unknown parameters is tried by Weidemann and Stear [51].
Later with the help of measure theory, its utilization is widened into
the area of filtering of general stochastic systems [45], [46], [52]-
[54]. Here an attempt is made further to apply the same corcept in
the observability problem. The main feature of this approach lies in
the transition of the definition of the term "information" from Fisher
to Shannon, i.e., the meaning of informaticn here is understood in the

sense of Shannon.

Define two random vectors x and y as

% (xl, Hpt vy xn).

Y (yll Y2l o0y Ym):

and assume a joint density p(x,y), and marginal densities p(x) ad
p{y) are defined as usual. Then the entropy of x, H(x) is defined as

by (3-4). Entropy of y, H(y) is defined similarly
H(y) = -E[1np(y)].

In the same context conditional entropy H(xly) can be defined as
in [41], [51]-[54], i.e., for a given conditional density p(x|y)

and chosen specific value v =y then

H(x|Y) = - [ p(x|y)1np(x]y)x. (3-11)

....................
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From the average over all possible y _'%:
B(x|y)= - L[pW)H(xly)dy, ;-‘
.-::.-_'.j-_::
= - [y PWIR(xly) op(xly ) ddy, L \
= = I PRV Inp(x|y) dxdy, HT*
= -E[Inp(x|y)]. (3-12) ‘_
Next, define joint entropy H(x,y) in a similar way as ‘:‘t
Hzy) = - [y PO y)inp(x,y)dxdy, i
= -E[lnp(x,y)]. (3-13)

With the above definitions, mutual information between x and v is
derived.
Upon the definition of (3-1), the average mutual information of x

for specific y =y is termed as conditional mutual information [41:

= 4

I{x,y) which is expressed as

I(x,Y) J PIY)I(x.Y)dx,

p(xly)

S P(x|y)ln ax. (3-14)

p(x)

I{xX,y) is the measure of information gain which is provided by the

measurement y = Y. So, averaging of (3-14) for all possible values of

Y vields the formal definition of the mutal information I(x,y) [41],

(45], [51]-[54] as

.................................................................
.........................................................
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P(x|y)

dxdy,

I(x,y) =/ (x,y)1n
’ 2 p(x)
p(yix)
= fx'yp(x,y)ln axdy.

p(y)

3 Using the entropy definitions (3-4), (3-12), (3-13) I(xX,y) becomes

L I(x,y)

- = H(x) + H(y) - H(x,y). (3.16)

H(x) - H(x]y).

H(y) - H(y[x).

(3-16) can be diagrammed as in Figure 5.

H(x) H(y)

H(x,y) RO

Figure 5, Entropy and mutual information
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I.e., mutual information is the coammon portion of the information H(x)

and H(y). So, it is clear from (3-15) that if x and y are

indeperdent, i.e,,

p(x|ly) = p(x),

then, I(x,y) is always zero due to In(1l) = O and no common portion in

Figure 5.

1. Properties of I(x,v)

Mutual information has the following important properties;

1) I(x,y) = I(y.,x) >0
inequality
information is always greater than zero except the case where x, y are

stochastically independent.

This is called the "Shannon inequality.” Mutual

2) I(x,y) > I(x, L(y))

Some information is lost by the transformation L, where L(y) is any
mapping which depends on the domain of y. Equality holds if and only
if the mapping is one-to-one and onto. Loss of information depends on

the relation

H(y) = H(x) + E[1n|J]|],

where y = £f(x), J = Jacobian of f(x)

3) I{x,¥y) > I(z, y), (3-17)
where z = f(x,N), N is a random function or variable. Information
e e e e S e e
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loss is incurred, also, due to the random term in the transformation.

4) The information about X increases monoton-cally as more

observation is taken, i.e., KRN

I(xl, ceer Ki Voo oeeey yM)SI(xl, ceer Hi Ve oeeer Yy YM+1 cee)s

(3-18) e

N

For our own purpose here, the first equality of (3-16) ancd the .

property 4) above play the most important role. (3-16) is wused +to L-

compute mutual information between x and y by considering Hi(xz) as .

an uncertainty of the system state x before an observation is made and
v

H(x|y) as the uncertainty of x after an obsservation is made. Thus

"'.
)
A

I{x,Y) is interpreted here as the uncertainty decrease or, %

equivalently, information increase due to the observation. Since this :Z:-;,:'
2

uncertainty difference is entirely caused by the observation y, the ACh e
O..‘
“y ¥

mutual information I(X,y) can be used as the measure of the

T

observability of the system. The increased amount of information due

to the observation, then can be evaluated using the inequality (3-18).

I.e., the difference

I(x:&.’ sy }{k; Yll R YM; YM+1) - I(xll sy chl' er sy YM)

is the information change or information rate which is caused by the

(M+1)~th observation data. In communication theory the maximum mutual

information over the p(x) is defined as channel capacity C,

C = max(I(x,y)). (3-19;
p(x)
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Example 3-1
Consider a simple scalar system where observation ¥ is the sum of

the random variable ¥ and observation noise n

Yy =X +n. {3-20)

Let X be a zero mean Guassian random variable with density

2
1 X

pix) = exp(-—). (3-21)
21S 28

S is the power in the signal . Suppose ancother random variable n is

independent of y and is Gaussian with zero mean, variance cfl. Then

Plylx) =p (y x)
1 { (y—x)z}
= == exp{- ) . (3-22)
|’21r0n: 201;.21

Sc, from Table 1, the conditional entropy is

HY [X) = 1/21n(2neor21) . (3-23)

Since the output is a sum of the two Gaussian signals it is also

Guassian with variance S + 01,21, i.e,,

2
1
—_— Y
ply) = exp{- }. ‘ (3-24)
bzn(smi) 2(S+o§)
Sc,
.......... XERE Ll e \ SR -i;l, e
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ﬂ . H{y) = 1,’21n[2"e(s+on),: . {3-25)
< Thus, from (3-22), (3-25) and the definition (3-16)
] I(x.¥) = H(Y) - HY|X) ,
‘ s s
= 1/21n(1 +—§) = 1/72In(1 +—), (3-26)
g N
n
i where N 1is the noise power. Note in {3-26) that as ncise powar
becomes small, mutual information increases due to H(y|X) decreasing.
So, the output y approximates the input X more exactly. Oprositely,

if N> o , i.e., the input is totally "masked" by the noise, then
I(x,y) approaches zero. Then x and y look like independent signals.

No information about x is tranferred toy. All of the information is

; lost during the transmission. It is clear that I(x,y) increases with
g

;f' increasing signal to noise ratio (SNR). Since, the correlation
’

rl coefficient r, in this case is

I:; 03‘ S

. 2 = =

re = :J? =

A S+N

» Y

I(x,y) can be obtained in terms of r from (3-26),

\.‘ . ..-. .

.........

-
. Y "

B0t e et e e S e Te e N e AP . . .
C O F BT T Rl W N S-S IPUIRRIA T DA —— RIS N B A S AN




-_’ -

S
:

I..

" I(x.y) = 1/2In(1 + —) ,

' N

s

._: = ‘1/211’1(1 - ) ’

- S+N

N 2

= -1/2In(1 - r7). (3-27)
I{x.y) is a function of only r and ranges from zero to infinite wvalue
ﬁ as |r| ranges from zero to one.

3-3. Mutual information of stochastic systems.

Figure 6 shows the schematic configuration of the typical

stochastic system. Comparison of Figure 4 and 6 shows that the

h measurenent mechanism h{.) can be identified as an information. channel

where transferring of information occurs. -
l u(t) systerp X4 measurement Yt ~d
— dynamics —p function - S
- £(.) T on(.) =
» q
- =1
. measurement
g noise
- T vy
- system noise
| 3 Wt
E:: Figure 6, Typical stochastic systems
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However, generalization of Shannon's result (3-15) or (3-16) to
the continuous random process needs more assumptions on the measure
theoretic point of view. This is discussed next.

First, consider that the observation of the process X, which is
expressed in terms of the Ito stochastic differential equation

(with the suppression of deterministic control u(t))

dxt = f(xt,t)dt + G(xt,t)dwt, Xeg = xo (3~28)

is made through another stochastic equation

dyt = h(xt,t)dt + th’ (3-29)
where xteRn, yteRm; f(.) and h(.) are n, m dimensional vector valued

functions, respectively. W and v, are independent Wiener processes

t
with covariances Q(t), R(t) independent of Xeo- G is an appropriate
dimensional matrix. Assume (3-28), (3-29) satisfy the existence and
uniqueness conditions of the solution in the mean-square sense [34],
[36]. Let (Q,F,u ) be a measure space. Let Y = C[0,T] and F¥ be the
family of Borel sets of Y and FZ be non-decreasing sub-g-algebras of
0 generated by {ys, 0 <s < t}. The measure induced by Y, on the

t
is denoted by Uy, Let X be the vector space and

space (Y, Fz) is denoted by My and the Wiener measure induced by v

\'
on (Y, Ft)

F be the family of Borel sets of X. Fﬁ is also a nondecreasing sub-g

-algebras of F°. Then the measure induced joint measure uxy of the

joint process (Xt' yt) is defined on the space (X x Y, Fﬁ X Fz).

Further assume that
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t
s h(xs,s)T h(z_.s)ds < =, a.s. (3-30)
O

Then Gel'fand and Yaglon [55], Liptser and Shiryayev [56], Duncan [45]

proved that the absolute continuity

Wy << By o (3-31}
h uXY << ux X uv (3~32}
: holds. Further it is known that [46], [56] equivalence relaticn of

the measures

Hy ~ Hy
UXY~UXXUY~UXXUV

holds, also. If once absolute continuity condition holds, then by the
Randon-Nikodym thecrem [28], [31], [57] there exists a finite real
valued unique F-measurable funciton ¢ on f such that for every Ae€F,

e.g., in (3-31)
uY(A) = fA¢1(w)dL{,(w), (3-33)

or in a differential form

d
¢y (@) =—=(w) . (3-34)
duv

With the same reason for the (3-32)

(w) . (3-35)
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oo
The function, known as a likelihood ratic, plays a key role in the ‘C:‘_'{:
S
’ derivation of mutual information. From the Cameron-Martin translaticn E‘,.__
theorem [45], [46], [58] for the system (3-28) and (3-29), likelihood _"_
ratio becomes ::::::f
A
4 t t o
Yiy) = epts Rl s Klay - 172/ R(x,sP KT (F,s)ds),
du\l o] o o
(3-36) S
Hay = [hix_,s)R a 1/2 h TR' h(w,s)ds) =
(x,y) = exp{o (2_,s) v, — 1/2 hixg,s) (x_,s)ds},
du, % du, .
(3-37) ;
where E(xs,s) = E[h(xs,s) ]FZ]. If all the measures considered are .
probability quantitites Px' Py’ Pv and ny, respectively. Then the
Radon-Nikodym derivatives d)l and ¢>2 become density ratios L_
e, &P e
¢ = Lob = -_t;.;
de ddePv
So, by letting ¢ be
-1 o
= ¢2 . ¢1 '
) dny de .
ddePv dPY
dp T
= Xy
ddePy . 13-38)
e
- -
b -
" -
} N
r .-
T R R B s S S R T SRR S
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Then, from the definition of mutual information (in Shanncn sense)
Since, ny(xt,yt) = ley(xtlyt)Py(Yt)
¢(Xt'Yt) - ’
dP, (% )P (V)
dap_, (x,_lvy,)
- _ Xyttt (3-40)
dP (%)

So, inserting (3-40) into (3-39) yeilds

ap_ _(x_1v,) ap_ . (x. ]v,)
I(Xt’yt) =Xyt 4, _ﬁu_t;dpx(xt)dpy(yt) . (3-41)

dP, (x,) dP (%)

If probability density is used instead of distribution with the

notations
dP_(x, <x) dP (v, <y) dr_ (2 Lx]y)
polig)s —E——, p (v = L, p (xly) = e
d x Y dy Y dx

{3-41) becomes

Py (Bp 1Y)
I(%¢s¥e) fpx|y(xt|yt>1n->ip1§(T:)-t—py(yt>¢<tdyt ,

( . leY(xtlyt)dX .
X, ¥ )in 97
px(xt)

!
ny

.......................................................................
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px(xt)

=E1

]

H(xt) - H(xtlyt) (3-42)

Therefore, to compute mutual information for the system (3-28), (3-29)

one is, again, required to know either two densities - uncondditional

PR
and conditional - or two entropies. Next is a brief discussion on the L,;,*
solution of these density equations and approximation methods of these

densities using appropriate moments.

1. p(x,) and two-moment approximation N

Consider the sytem equation (3-28) again

dxt = f(xt,t)dt + g(xt,t)dwt, Ry = Xge (3-43)

Due to the unknown initial state xO and the additive noise w_, the

process {xt} can only be described by the statistical treatment. As

s is known [36], [57] the probability density evolution of p(x,) obeys

2
. the Kolmogorov forward equation
2 T

ip n 3(pf;) n 3“(pGG")

—_— = I +1/2 % (3-44)
'!E t i=] 3 x4 i, axiaxj
",
“ where all the arguments in the eypression are omitted for brevity.
‘--v
o But unfortunately the above partial differential equation can be
!‘ .
3
e e SRR
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solved cnly for a few sprecial simple case. So, in many practical
problems one relies on an alternative approximation approach such as
state estimation; e.g.,one obtains proper approximated moments of the
density instead of the density itself. Particularly the first two

moments are important in entropy computational purpose even though

they do not completely characterize density p(xt). It is known that

S ot an o

(36] the first two moments mean x, and covariance Pt propagate

F according to .. f

A~ - I (n_ ‘:
X, f(xt, Pt,t) (3-45)
L _ T, _ ~ 7 T X
Pt = E[f(xt,t)xt ] E[f(xt,t)]xt + E[xtf (xt,t,]
~ T T
- X, E[f (x_,t)] + E[G(x_,t)Q(t)G" (x,..,t)], (3-48)
t t t t
where §t = E[xtlxs, s< t]. By neglecting third and higher-order
moments in the evaluation of (3-45) and (3-46), one obtains the
following approximated version for §t and Pt'
. A Pt ~
$ = f —_— -
L A 5 fm(xt, t), (3-47)
P, = f (%.,t)P, + P.fo(x,, t) + G(X,,t)Qt)G (X, ,t)
t X' t tTxVE t! t!
+ PG (2., t)Q(t)GL(%.,t) + P.G(%,,t)Q(t)G T(%,,t), (3-48) .
Tt b S LR o pro i R R
where fx(') and Gx(') are first partial derivatives and fxx(.), Gxx(')

are second partial derivatives at X Further if the second partials

of (3-47), (3-48) are negligible compared to the first partials and

ST T e e e e e (T T e T T e T e T T
------ FVWL R WO W YL W TP NP W YRS P W, WA W
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G(.) is not a function of Kys then
?ct = f(;’it,t), (3-49)
5 = £ (%, ,t)P, + P.f(x.,t) + G(£)Q(t)GT(t) (3-50)
¢ = Tx(xp OB + B (x,

which 1is a commonly used approximation. Of course, there are many

other algorithms which can be practically useful .

2. p(xt]yt) and extended linear filter

Conditional density p(xt|yt) of the system (3-28), (3-29)
satisfies the nonlinear stochastic partial differential equation,

commonly known as the Kus™ner equation [34], [36]

ap n 3 (pf;) n 32
—=- +1/2 ¢ (PGQET) + (h(x,,t) - Eh(x,,t))TR-1 (%)
It 1= 9k i=13x;3x;

{dyt - Eh(xt,t)dt}p. (3-51)

Due to the additional measurement-related third term in (3-51) it may

be more complicated to solve than (3-44). To obtain the conditional

moments of the pdf p(xtlyt) of (3-51) let

A _ y : ‘
; W(x) = E[b(x,) [FY], .
J then any conditional moment satisfies the stochastic differential lil“
equation .\
; T T TR, i
dy (%) = (E[y_f]+1/2 tr[E(GQG V. J1}dtHEMR] -V h}'R (dy, - hat),
. (3-52) —

.......................
...........................
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where h = E[h(xt,t)ng] and Qy, ] o 3T€ the first and second partial

"

derivatives of y relative to x respectively. By lettinglp(xt) =X

tl

and w(xt) = xtxz obtains the mean and covariance as

~ el T
dxt = f(xt,t)dt+{E[xth (xt,t)]

~£,E(h (%, 1) DR tt) (dy,E[h(x, )1}, (3-53)

ap, = {E[(xt—ﬁt)fT1+E{f(xt—ﬁt)T}+E[GQGT]—E[(xt—ﬁt)hT]R‘l(t)
E[h(x, -%,) T1}dt+E[(xt—§t)(xt—ﬁt)T(h-Eh)T]R‘l(t){dyt—Ehdt}, (3-54)

Since, Pt is a function of the higher-order moments it can not be a
finite-dimensional filter in general. So, various approximations and
assumptions are made to ensure that (3-53), (3-54) to be finite
dimensional and practically-implementable filter algorithms. If,
again, G(.) is a function of only t, and the first-order expansicn of
f(.) and h(.) is made, then (3-53), (3-54) reduce to the well known

extended Kalman filter

~ _ :\ T_l _ ~ _
&, = £(x,,t)dt + PR (t)[dy, -h(x,, t)dt], (3-55)
P = £ (R, t)P.+P fL(X,, £)4G(£)Q(t)GL(t)-P, hiR L(t)h P (3-56)
t X\t L v St o tx Xt
where f_ = 3f |
X 3 x| x = %
t | e T F
h, = 3h | ~
I X, | X =X
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The Kalman-Bucy filter is obtained, of course, if the system and
measurement equations are linear. Depending on the order of the
expansion of £(.) and h(.), second or even higher-order filters can be
derived.

Notice here that the utilization of any approxtimated moment
expressions of the density instead of the density itself incurs the
conceptional change of the mutual information from I(xt,yt) to
I1(X,.y,), where §t=E[xt|F§c’]. In the next section, the second-order
moment approximation of the density functions p(xt) and p(xtlyt) will
be discussed in the computation of the mutual information I(?:t,yt).
Before this, the relationship between the Shannon and Fisher
information will be sumnarized for the stochastic system instead of
the random variable case. The following are the vector version of the

results of Liptser and Shiryayev [5€].

3. Relationship between Shannon and Fisher Information.

Consider the general nonlinear stochastic system as in (3-28),
(3-29). Nonlinear functional dependence of f(.) and G(.) in terms of
*e
information concepts very difficult. This difficulty can be avoided

makes the derivation of any relationship between the two

if a specific form of nonlinear system is assumed, for example, linear

dynamics-nonlinear observation system. In this case,system is given as

dxt = f(t)xtdt + g(t)dw,_, (3-57)
dyt = h(xt,yt,t)dt + dvt. (3-58)

-
..................
....................

...............
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Note thrat h(.) can, also be a function of the cbservation y itself
under the bounded strong solution cordition for t and the

nonanticipativeness for Yy Assume further that h(.) satisfies

T
T
[ IB" (%7, Dh(x,, Y, t) 1dt<e (3-59)

t
o

for each t, togth, and two densities p(xt) and p(xt]y+) are ‘twice
continuously differentiable with respect to Hy -
Then Fisher and Shannon information has the following relaticn ,

t
T v =L, vy 172 S trig(s)g’ (s) [T (x_,y ) -7 (%) 1)ds, (3-60)

o]
where Io(xt,yt) is Shannon information quantity due to the observation
equation (3-58) only, 1i.e., the case where statistical uncertainty of
the process {Xt} is not considered, and J(Xt'yt)' J(xt) are Fisher
information quantities corresponding to the densities p(xtlyt) and

p(xt), respectively. Io(xt'yt) can be expressed according to [45],

[46], [56].
t _ T _

I (% v )=1/2tr. ftE{[h<xs,ys.s)—h(xs,ys,sl [h(xs,ys,8>—h(xs,ys,s)]}ds,
°© (3-61)

where

=, - y
b (., t) = E[h(x_v,,t) [F{].

Swoprt
. ) P
O I <

s
s

»
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The proof of the relation (3-60) can be found in the cited

reference.

3.4 Observability using mutual information

As mentioned before the mutual information I(xt,yt) is the

information contents (in Shannon's sense) about the state X, which is

contained in the observation Yy i.e., the common information of the
two processes X, and Yy So, once it is computed then it represents
the '"tightness" of the comnection of the state x, to the observation
Yy Hence, it might be sued as a criterion to determine the degree of
the observability of the given stochastic system. The term
"observability" here is, of course, used in a different meaning from
the deterministic case and even different with the traditionally used
stochastic case where the Fisher information is commonly used.

As the Fisher information matrix and the observability matrix is
practically used together in a traditional observability
determination, Shannon's mitual information and the temrm

"observability" will be used together henceforth.

But due to the difficulty in solving the exact density
equations, Kolmogorov forward equation and Kushner equations,
approximated moment expressions are utilized, altermatively.

Before this, former results on stochastic system observability

are sumnarized next.

...........................
------------------------
................
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1. Former results on stochastic system observability.

Consider, again, a general form of stochastic system (3-28), (3-

29)

&

dyt

f(Xt,t)dt + G(Xt't)dwt' (3-62)

h(}tc,t)dt + dvt' (3-63)

The traditional approach in the determination of the observability of
the system (in a Fisher sense) is as follows: using the likelihocd
function A with A = p(xtlyt) for the noiseless system (Q(t) = 0) in
(3-28), (3-29), it's logarithm quantity ln (A) is maximized according

to the definition of the Fisher information

321n¢ A )
7= R

3x@xt

7. ' (3-64)

Then, the Fisher information matrix J(t,to) for the first-crder

approximation of the system about the estimation ﬁt is obtained as

[34]-[36], [38], [46], [47]

T

-1 t T T,-1
J(t,to) = v (to,t)Po @(to,t) + {Q (s,t)H'R "H® (s,t)ds,

Q
= Ji(t,t) + I (t,t), (3-65)

where ¢ (.) is transition matrix for the linearized portion of £(.) at

A

Xt' i.e.,

........
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L
3 8
p..
b
:
N 3¢
g —(t,s) = F(t)®(t,s), ®(t,t) =1, (3-66)
3t
) E":‘-'}
- ’f g
3 fo <o 5
- - .-".\J'.
:. th Xt = xt, t~'. .
oh
H(t) = ——- ~
3xt Xy = Xy,

and J, is due to the initial information P;1 and J_ is due to the
observed information, respectively. Or after some algebraic
manipulation recursive version of (3-65) is obtained as

) T gl
= -F (t)J(.)=-J(.)F(L)*H" (t)R “(t)H(t). (3-67)

dt

Traditionally Jo(.) is called an observability matrix (some authors
[34], [36] call it an information matrix.). Then positive
definiteness or nonsingularity of JO(.) is used as a criterion of the
determination of the observability for the systen. Or, for sore

positive constants a, B8, s, and unit matrix I, the relation
0 <ol < Jo(t,t—s) <BTI, (3-68)

is checked for all t > to+s [36].

However, the Fisher information matrix J is related to the

estimation error covariance matrix Pt by [47]

b, b T
P, 2 (I +-—=)F (I + —-)". (3-69)
axt IR,

- : R S > - . - - IR ) - - - ~ ~ - .. " . - . . . . Te -
- . . . Y - - «" e ¥ Lo » O, P S - . ot et et N P P . - o te .
CR IR AL I A » LR TR ST A I I - ORI -t v
PULIPY PR W PP PSS I O Wy P NG Wt Wiy W Wb Pl W SR W N PR an i3 an sl et at et
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with b(t) being a bias of x,t with respect to xt. If x,c is an unbiased

estimator, then
-1
Pt 23 7, (3-70)

Further, if :“:t is optimal, then the equality in (3-70) holds. I.e.,
the covariance of the individual state estimation error is lower
bounded by the diagonal elements of J | which is, so called, Cramer-
Rao lower bourd.

As well as the positive definiteness of the observability matrix,
eigenvalues of this matrix are, sometimes, utilized to test the system
observability [37]. Appearance of any 2zero eigenvalue(s) means
singular Jo and causes system unobservability. High stiffness between
the eigenvalues means weakly observable. Cordition mumber g of Jo

q=————

S

’

where e and s are maximm and minimum eigenvalues, respectively,

is used as an indicator of the system observability.

Somewhat different approach is studied by Sunahara ([59]. A
stochastic system (3-62), (3-63) is said to be observable if there {
exists an estimator such that the associated error converges to a .

sufficiently small value on the time interval [to, t1] in some
stochastic sense, i.e., for the preassigned error constants § and € , - ___j

0<e< 1 if

>8) <¢e, (3-71

...............
........
P
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is satisfied, then the system is said to be stochastically observable.

. Here ;{t is obtained by the pre-assigned filter form
A - T = [y -
dxt = f(ﬁt,t)dt+PtH (t)[dyt h(xt,t)dt], (3-72)

for the appropriate dimensional matrices Pt and H(t).
Even though the Fisher-information approach is most widely used

in the observability determination of the given stochastic system,

several disadvantages can be indicated when compared with the
Shannon's mutual-information approach.

1) Even though the theoretical definition of the Fisher wh

information (3-64) can accommodate system noise Wy, the

practically used form (3-65) does not accommodate W, as far as e

the likelihood function which is chosen as the conditional S
density p(x.|y,). Neglect of the system noise may cause bw
incorrect results when w,_ is significant compared to the other fi;

noises [39]. A convenient form to handle both system and f._.
observation noises is not yet available. However, the mutual
information conveniently considers both noises simultanecusly
since it always requires both densities p(xtlyt) and p(xt) S

together from its definition.

2) If the system is unobservable or marginally observable, then
singularity or almost singularity of the observability matrix
makes it very difficult to compute this matrix, practically.

But this problem does not occur in the mutual information

camputation as can be seen in the next subsection. &

............................................
..................
..........................

................................................




3) Extending linear results to the general nonlinear case
requires many approximations. In the nonlinear case ,a E_,:
general form of transition matrix does not exist. I(xt,yt) \:\9\3
requires many approximations to be practically implementable, ' g:%
but here one can use many well-developed nonlinear filters L.
which are already publicaly available. {?;

4) Even with the above problems in the Fisher information
approach, simplicity in the calculation and recursive nature :
make it popular in the linear or linearized, negligible system
noise applications. ;‘

ko

2. QObservability computation using mutual information. v_:._:';
From the discussion of the previous section, caomputation of
observability in terms of mutual information may be found conveniently L -
by an approximated filter algorithm in many cases. From (3-42),
I(x,,Y,) computation requires two entropies - marginal entropy H(x,)
and conditional entropy H(xtlyt) . Both entropies can be camputed from L“‘

the relations

H(x,) = n/2 InA + 1/2 In(detry), (3-73) o

H(x,|y,) = n/2 InA + 1/2 In(det PL), Pfo = PEO, (3-74)

where I‘E is the covariance for the marginal density p(xt) and PE is
the covariance for the conditional density p(xtlyt) . Note superscript f-
T is not a transpose here. No approximation is assumed in both l'i and
P’i. Therefore, from insertion of (3-73), (3-74) into (3-42) -
N
e e L e e e e e e Al




.
t
89 .
I(%,,v)= 0/2 InA + 1/2 In(det T1) I
t! t) t .
- n/2 InA - 1/2 In(det ), b
detFE .
=1/2 In (-———- T) ' {3-75) .
det P ~
t )
T o_.T g
where I(Xto'yto) = 0 due to rto = Pto’ i.e., initial information is
normalized always to zero.
Since esact covariances Pz and PE are, in general, functions of -
"
the higher —order moments, computation of these matrices are alsc -
difficult. If any of the second-order approximation algorithms is used
with the resultant covariances I' and P, then 2
b
H(Xt) =n/2 InA + 1/2 ln(det Ft), (3-76)
H(%,ly,) = n/2 1nA + 1/2 In(det P,), (3-77) N

where £t is the estimation of Xy obtained from the chosen second order

approximation. In this case, mutual informaticn I(ﬁt,yb) becomes

Hxeyy) = B(xy) - Hx v ),
1 det Ft A
= —— In (——————=~ o I{x,.y,) = 0. (3-78)
2 det Pt

Equation (3-78) is the final result which will be used as a criterion
of the cobservability of the stochastic system. According to the third

property of the mutual information (3-17)

(x,,v,) 2 TR, ¥,) - (3-79)
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Inequality in (3-79) is due to the information loss which is incurred
during the approximation procedures. For the observability of the
individual state, say i-th state, the following will be used

I‘ .
Mii )

Ii(xi,Yt) =1/2 1ln (-P

i=1,2, ..., n, (3-80)
ii
where %, is the i-th element of Qt and I';;, P,, are diagonal elements
of I‘,c and Pt' respectively. Of course, Iy and P, are computed as a
part of state estimation. Thus, both are defined only when they are
positive definite. The degree of observability at time t is easily
computed by reading T & Pt and simple computation according to (3-78).
From (3-78) it is clear that for I(;zt,yt) to be maximum, Py must
be minimum.If the minimum covariance P: of the estimation error Is
obtained by the unbiased optimum estimator,then the maximum Fisher
information is obtained, also [47], i.e., Cramer-Rao lower bound is

obtained in this case. So,
P >P =J" . (3-81)

To observe observability variation due toT ¢ and Pt changes,

consider the simple linear system

ax

¢ = F(t)xat + G(t)aw,, , (3-82)

il

dy,C H(t)xtdt + dvt, (3-83)

where wt and Ve have strength Q(t) and R(t), respectively.

Covariances Pt and r‘t, then, satisfy

i
- |

1'"1, = F(t) T + I‘tFT(t) + G(t)Q(t)G (L), T (3-84)

t to 0
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ét = F(t)p, + PtFT(t) + G(E)Q(L)GT (L) - ptHT(t)R"l(t)H(t)pt,

P, =P _=T_ . (3-85)

Mutual information change in this system arises in two ways. One is

through initial information P o’ and another is through

Lo’ t
measurement mechanism H(t).

Even assuming the same initial information such that I, = P__, G
to to WSS 3

the magnitude of rto or Pto plays an important role at the final time. L*\
For example, a large initial covariance make system observability grow :'.
fast at the initial stage since Pt in (3-85) tends to decrease rapidly _::1.::
to its steady state if the filter works properly. The main reason for ‘-"":"
this is due to the last term of (3-85). However, Ty does not change i

.
v
MY
e

v
i

rapidly since there is no such term in (3-84). Some guidelines of
choosing proper initial covariance in simulation can be found in [60].
But choosing of specific value of Pto is based on the designer’'s
"degree of confidence" of ;:to relative to unknown true value S in

most cases. If too optimistic (choosing too small Pto by

overconfidence), then information growth may be very slow even in the

case where the system is deterministically observable. So, tuning of

the filter is compromising between two extremes by trial and error -_—
until obtaining desirable performance.

The effect of measured information on observability is seen also ’
through the last term P.H (t)R (t)H(t)P, in (3-85). Especially o
measurement structure matrix H(t) and noise strength R(t) are
important here. So, if this term is negligible due to some reason, for .;;:‘_'::j

......................................................
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example, R(t)->xand/or H(t)->0, then the changing rate f‘t and l;t in
(3-84), (3-85) will be almost the same. Thus, mutual information or .
observability will not grow any more in this case.

A short discussion of the relation between the deterministic
observability condition and the mutual information for the linear

system case is made next.

i 3. Linear systems: deterministic and stochastic observability.

Mutual information, or formally, stochastic observability of a

system is approximated as the log ratio of the two covariances Ty and

Pt' So, the relationship between deterministic and stochastic
cbservability is characterized by the relation between these matrices .
and the satisfaction of the deterministic observability condition. To

avoid complexity consider a stochastic linear (time-invariant) system

dxt = Fxtdt + gdwt, (3-86)
dy,c = thdt + dvt , (3-87) -
where wt, vt have covariances Q, R respectively. For this system a :‘EZ:',:Z::
theorem is cited from [56]. }_ijﬁi':j
g
Theorem 3-1 e
Let the system (3-86), (3-87) satisfy the detemministic L

observability condition, i.e., observability matrix




. [ H
HF

) . {3-88)

| 1

has rank n. Then the covariance matrix Pt of the system is uniformly

bounded and converges to its limit B , where

P lim P_,

- e e
: - . ~ ~ T u:'::_f.’ﬂ
= 1im E[(xt xt)(xt—xt) 1. (3-89) .::.,'..:_”

t=> o
5 is the solution of
FP_ + B FX + GG - P_H'R ‘Hp, = O. (3-90)

Uniform boundedness is proved by changing the system dJdynamic

equation (3-86) into its auxiliary control problem.

Remarks

1) For uniform boundedness and convergence of Pt to B, at least
an unstable state, if exists, mist be observable
deterministically [61]. If the system is stable then the

observability rank condition (3-88) can be dropped for

boundedness of Pt'
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2) If matrix pair (F,G) in (3-86) constitutes a controllable

system, i.e., controllability matrix M (when W, is considered

as an input control).

ShAEEE

M= (G, FG, ...., ¥ ),

- has rank n, then P, is positive definite [36], [56].

' From the previous theorem, the following result can be proved.
L In the theorem, covariance matrix manipulation identities are cited

from the results of Balakrishnan [61].

Theorem 3-2

If the time invariant 1linear system (3-86), 3-87) is
deterministically observable, then it becomes stochastically more
observable in the sense that the mutual information I(;{t’yt) increases

with time.

Proof

By Theorem 3-1 covariance Pt which is the solution of

s T T o o To-1 _ _
P, = FP, + P.F + GG - PHR HP, P, =P, (3-91)

converges uniformly to P, if the system is deterministically

observable. Now consider covariance I‘t where

L] T T .
I"t-Fl"t+ l",cF + GQG, Pto_Po . (3-92)

We want to show next the relation I‘t > Pt' Differentiation of (3-92)

gives




: ;E'r:ﬁl'-::;';
¢ R
!
N 95 o ‘.E::'.:
: Rg
: T, =FL + I F (3-93) 5

i ¢ TFR LS s
? and the solution of (3-93) becomes : ?.
- Qg;-‘
N o ']
- . . LT
i e = 6(t) T ¢ (t), (3-94) 24
: where ¢(t) = Fd(t), $(0) =T . (3-95)

Using the same procedures as (3-91) gives
| b, R oJRPRRCR, JES B | -
: Pt =(F PtH R H)Pt + Pt(F PtH R "H)" , (3-96)
and it's solution
B, = y(t)P y (1) (3-97)
t oY '

with

bty = (F - PHR HWY(E), ¥ (0) =T . (3-98)

[ in (3-94) and P_ in (3-97) are determined by letting t=0 in (3-92)

and (3-91), respectively. Let eigenvalues of F in (3-95) be Xl’ xz,

""An such that

A
)\1 >)‘2 2, vseey 2 ™,
Tﬁ—lH) in (3-98) be Py Py .....prlsuCh

that Py 2 Pyr coves 2 Py then, due to the term PtHTR_IH in (3-98) the

and eigenvalues of (F—PtH

relation
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i > Pn’
holds. Considering (3-94) and (3-97) and both having the same initial
conditions ‘ R

D(t) =T, - P, > 0. (3-99)

Further the difference D(t) is monotone in time since all the
‘ eigenvalues appear as an exponential form in ¢ and ¢ by the Caley-
Hamilton theorem. So, convergence of !?t to P, and monotonicity of

D(t) says that I(it,yt) grows monotonically from (3-78). Thus, the

' system becames more observable as time progresses. **

::EI More intuitive relations of the two cbservability concepts can be :‘-
i derived when absence of process noise W, is assumed. In this case, 3
using a matrix inversion identity [62] for (3-91)

-1 T -1 -
Pt = -F Pt - Pt

1 T -1 -1 _ -1 e
F+HR H P =F", (3-100)

Then, the solution of (3-100) is
Pl = ¢ (t,. )P l(t ,t) + {gr(s,t)nTR‘lm(s,t)ds , :

[ ] (o] Sk

5 =3 (t,t ) +J (t.,t). 3-101 RERR
» i( o) o( o) | ( ) 0
i F.:.:.:-:
- SN S
- PR
RO
SRR
’ p
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Notice, that P:I

in (3-101) is exactly the same as the Fisher
information matrix J(t,to) in (3-65). Using the same procedures for

the covarianée I‘t in (3-92), vields

c1_ . To-1_.-1 11 -1 ~

L 7t -n e oot =t =, (3-102)
and it's solution

r;l = ¢T(to,t) r°‘1 Bt t). (3-103)

Assune here that P_' is nonsingular, i.e., there is some prior
information about all states. If the system is deterministically
cbservable, i.e.,the second term of (3-101) is positive definite, then
comparison of (3-101) and (3-103) considering, again, the definition
of (3-78),shows that I(ﬁt,yt) increases until P, reaches to its limit,

Now consider there exists system noise w_. Then from (3-92) its

t
solution is
T t T, T
T = QLA (E8) + Jat,3)G()Q(0)G ()47 (.0,
o
=C,(t,t)) +C (t,t). (3-104)

Notice that the matrix C_(t,t)) is termed, traditiomally, as a
stochastic controllability matrix. So, from (3-101), (3-78), the
classical concept of stochastic observability and controllability
affect the mutual information as follows: r(ﬁt,yt) is increased by
both increased quantity of controllability and observability.

Contribution of the stochastic controllability matrix co(t,to) is made

via increasing T, in (3-104), and thus increasing I(:‘ct,yt) in (3-78).
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Contribution of the increased stochastic observability Jc(t,to) is via A

decreasing P, in (3-101) and thus increases I(Qt,yt) since Pt enters b

t

(3-78) into its denominator.
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CHAPTER 4: INFORMATION STRUCTURAL ANALYSIS OF

b
K
b
[
-

BOT AND ARRAY SONAR SYSTEMS

Simzlation results of the information structural analysis of two
important examples of nonlinear stochastic systems are presented here.
System models are taken as the same underwater tracking problems as in
Chapter 2 to relate with the deterministic observability conditions.
To fit more practical situations in both BOT arnd array SONAR tracking
examples, it is assumed that the information acquisition about the
system states is made through the discrete measurement mechanism.
However, the evolution of the system states are assumed to be the
time—continuous . Thus, the estimation of the system states are
implemented by the discrete-observation, contimious-state filter
algorithm.

Before presenting this, the following simple 1linear system
results are provided to give a clear understanding of the current
approach.

The term "observability” in this chapter , of course , means the

degree of the observability in terms of mutual information.

......................................
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4.1 Falling-body example.

Initial position 2(0)

————?——.——.—

—

position |

lvelocity -~
| 2(t)=x,(%) ~ -

l

......................

........................
.t et T Lt Lt et et l et
.............
.....

Figure 7, Measurements of falling-body

Consider a noise free second-order system representing a falling-

body in a constant gravitational field g (Figure 7).
Z(t) = -g, t 20, (4-1)

Let the position variable x,=z, ard velocity variable x2=2. Then

. o 1 o}
x(t) = [ ]x(t) + [ ] , (4-2)
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This system is observed by the noisy measurement device which can be

PR

I. .t

LA S

P N
.

he t e

expressed by E..

y, = Bx(t) + v, (4-3) {

o

where random white Gaussian noise has covariance R(t). Simple test ;\_

shows that the deterministic portion of the system is observable if
one observes position x, and unobservable if observes velocity x,.
Intuitively this is clear because if one measures X then it's :
derivative gives velocity X,. No other information is required to
describe the system. However, when one measures velocity x,, then as
integration is required to get position x I.e., L

1

t
xl(t) = fxz(t)dt + xl(O) R (4-4)

b o o
-

but xl(O) can not be determined from any measurement data. So, the

system is unobservable in this case.

Using the usual Kalman-Bucy filter with Gaussian noise, mitual —
information I(ﬁt,yt) is compared in Table 2. In the deterministically :
observable case (by measuring position X,) mitual information of the
total system (T in Table 2) grows up to 5.7 from zero at final time 20 ,,
sec, Position (p) and velocity (v) grow 4.9 and 1.8 respectively. .
But for the unobservable case (by measuring X,)  corresponding 7
observability grows: T = 2.8, P =2.3, v=1.8. To compare the e
significance of the logarithm scale a linear scale is also shown. For

L e e S e S e T e e
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PO o~

the unobservable system, only the observed velocity variable keeps the

same level of observable system (1.8).

The degree of observability directly affects the filtering error.

.‘l
2

This 1is analyzed in Figures 8 and 9. Figure 8 shows the ;"{;ti

AR AU
-
o

T

deterministically observable case with initial errors of 20 m in

'-‘I

L
A}
FARRY

position and 5 m/s in velocity. Since position is measured in this

o L

N T et v e

) LA o

A [LAMLIPL S TN e
“r

LIPLO ORI . W,

A

case, its information is dominant and thus the corresponding error
decreases rapidly. The velocity error is, also, quite small at the
final time since X, is also an observable variable. However, Figure 9
is much different than Figure 8 even with the same initial errors.
< Since velocity is observed here, position is an unobservable variable,
- and thus carries very large errors up to the final time. The velocity
- variable (observed quantity here) shows quite satisfactory performance
campared to the position variable.

Table 3 shows the effect of initial information P°(=r°) on the
observability' and filtering error. In general, as larger initial
information is assumed (smaller Po) the system obtains smaller final

information. Note also that in most cases information acquisition is
quite fast in the initial stage. This phenomenon is more significant
as Po increases. It implies that the filter forgets the initial &-—-
uncertainty very quickly when the assumed initial information is ‘
’ small. This is cne of the most desirable features of the Kalman-Bucy :1;_5?:;,
- : filter. Practical experience suggests, however, that in stochastic

nonlinear filter design, with non-negligible nonlinearity, it is y
desirable not to use overly pessimistic initial-error : :fj:f

+Observability again refers to I(;‘t'yt) for all the following data, T
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covariances since a large Po could excessively dampen the system
dynamics and filter gain matrix and thus reject same of the valuable
measurement data in spite of fast information pick up from the
measurement mechanism{64]. This phenomenon can be found in the
position error (ep) when the system is deterministically unocbservable
with a high value Po. An opposite direction, i.e., overly optimistic
Po’ sometimes, makes the response of the filter too slow.

As a summary, system observability is strong with strong position
and velocity observability when the system is deterministically
observable. But it is weak when the system is deterministically
unobservable. Since position is an unobservable state in the latter
case, its poor observability generates large filtering errors during

the observed period.

4-2 BOT system and Information analysis.

It is well known that a BOT system is observable only when
relative maneuvering exists. It is checked, again in Chapter Two.
using so called, mixed-coordinate system (see also [33],[63]). Here
the same problem is used to analyze and compare the observability
content in terms of the information theoretic point of view. For
comparison, two more popular coordinate systems - rectangular and
modified polar (MP) coordinates- are adopted in this section. System
description of the individual coordinates are presented in Table 4,
with proper dimensional noises. Measurement equations are written in

discrete form for future conveniences. Using the same procedures as

bair s AN AN 8 e dha - gu i SRb et i mp el ]
BT

v v v e ey

ol ..,
N i
. B

b 0 Pt
) .

LN AN 0 I

)

13 T"
(% A
) . l::‘ ..“:1
o 1"04'1 -

v

a_ B
e
L'LL

AR
L
'I




\ 108

derived in Chapter Two, deterministic observability for the remaining _

two coordinates can be checked. Long algebraic manipulation shows

also that the system is observable when relative maneuvering exists. s el

. This is not surprising since deterministic observability is not
affected by the coordinate transformation.

Note in Table 4 that the system equation is linear and the

observation equation is nonlinear in rectangular coordinates and vice

v
¢
:

versa in the modified-polar and mixed coordinates. The variables r, A
v, a, [ represent range, velocity, acceleration, bearing, -

[ respectively.
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To implement a not-excessively-complicated nonlinear filter of a
continuous-system discrete-observation type,a truncated - secord order
filter [34], [36) is considered. With the same target and observer
{(or ownship) configuration as in Figure 2, one-directional maneuvering

is assumed as

o,

ax(t)

-0.25 cos (0.005t) n/s2 (4-5)

ay(t)

and initial states are assumed Gaussian with proper mean.
Other parameters used are
T (Sampling interval) = 10 sec,
At (time update interval between observation) = 1 sec,
r(0) (initial range) = 8000 m,

Vs (target vel. in x-direction) = 10m/s ~ 20 kt ,

Vo, = O

Ty

Vox (observer vel. in x-direction) = 15 m/s 7 30 kt ,
v.. =5 sin (0.005t) m/s.

oy ( ) m/

Measurement noise sequence and system noise are assumed to be, also,
Gaussian with variance Rk and Q(t), respectively.

Under the assumption of near symmetric form of density and
negligible third and higher-order moments, a modified version of the
truncated Gaussian second-order filter is implemented.

Continuous~discrete type filter is, commonly, implemented in two

stages. The first stage, a measurement-—update stage, processes

observed data according to the discrete filter. The second stage
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performs the time propagation integral of the first and second moment
(or higher moments if necessary) of the state between the observation
intesval according to the continuous fashion.

This form of filter is particulary suited to us due to the nature
of the underwater SONAR system where the data-acquisition interval is
quite long compared to the data-processirg rate. The actual algorithm

is summarized next [34].

1. Measurement Update

At the sampling instant e abbreviated by k, mean and

covariance are computed as

Kepp = % *+ KLy, - h(x k) - B (x)], (4-6)

Prer = B — KA KIP, (4-7)

]

where gain Kk is given by

_ T~ -1
K, = PkH (x_k,k)A K’ (4-8)
= H(R T (% 6 BT \
A, = H(x R)P H (k) -b b +R , (4-9)
A 3 h E ':..
H(xk’k) =——( ~ , h is measurement function,
3 x | X%k

and where the bias correction term bm is an m-vector with i-th

component RN
b .(k) = 0.5tr{ P } A , i=1,2’._.'m, (4_10) .
mi 9x 9 xT k X=Xy K

m is a measurement dimension. __
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2.  Time progagation between observaticns

l Between observation intervals there is no measurement data, so 2
and P progate time forward according to the continuous filter with the
' initial conditions

~ ~

xti = Xpar Pti = Pk+1’

k Time integration of % and P at t, te [tk’tk+1] becomes
A = A A rA_
Xy f(xt,at,t) + bp , (4-11)
P = F(R..t)P. + P.FL (%, t) + @T (4-12)
[ t Tt t Tt STt t ! “!

where f(.) is the system function with an extra parameter a, ad

3 £

t) = —— .

F(X,., .
i Ix X=X,

Bias correction term f:p is an n-vector with i~th component

| g 32f1
| pi(t) = 1/2 er { — B } o (4-13)
3X9J X X=Xy
and for system noise function Gt(xt)
i
(6, Q(E)GP) 5= T [GikalGlj+ er { (——Qy )} o+
k,1=1 ax 3x
‘ 2
L] G?j 32Gik
1/2 6 r{———P } + 1/2 —_— T -
1kt - ot /2 tr{ PthT} Q1615 ] o (4-14)

s is a dimension of system noise.

............
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Thus at t = t,_ ., the initial condition cf the first stage

K+1
i becomes, again
X, =X, P, =P, (4-15)

and the same procedures repeat for new observed data.

3. Unobserved system covariance

Another covariance Tt is required to compute I(§+'Yt>' This is
evaluated according to equation (4-12). Since no measurement is made

here the measurement update is not necessary. Of course the reference
point should be different with (4-12) except at the initial
conditions.

With assigned parameters and algorithms, simulation is conducted
for three different coordinates. The following are the results found
from the analysis of the simulation for the first 40 minutes.

Tables 5, 6, 7 show the mutual information contents of the three
coordinate systems with various parameter changing-system noise Q{t)
and maneuvering ay. Total system observability is most strong in the
modified polar coordinates (Table 6). Rectangular and mix
coordinates show almost the same levels (Table 5 and 7). Of course,
directly observed variables - bearing(B) in mixed and P, range (r) in
rectangular - exhibit the strongest observability in all cases.
Inspection of all three tables show that system observability drops
significantly as the maneuvering parameter changes from aY 2 0
(maneuvering exists) to aY = 0 (non-maneuvering). This can be

explained best by the deterministic observability. As seen in Chapter

....................
.................
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Two, the sytem is observable determinirtically only when manuevering
.“... -

exists. T, 4
Another notable observability decrease appears when there exists b

system noise (Q # 0). This is due to a change of mutual information

quantity from Io(ﬁt,yt) to I(;:t,yt) (See Chapter Three for notation).

Notice also that range information is most drastically influenced
by the observer maneuvering (3.8 to 0.2 for mixed, 7.4 to -3.0 for
i modified polar, 4.3 to 0.9 (rx) and 5.0 to 1.8 (ry) for rectangular
coordinates, respectively). In spite of the strongest total

observbility, contribution by the range observability to the total

observability is the most negligible in the MP case.

Velocity observability remains very poor, generally, in the non-

maneuvering case, or when system noise exists.

The effects of the degree of observability on the range and
velocity estimation error are shown in Figures 10 to 13. Range errors
(Figures 10 to 12) converge toward zero for the maneuvering and
without system noise case (even different convergence rates), but not
for other cases. For all three coordinates, range errors seems to
diverge whena = O0Oand Q = 0. At least, they do not converge to

Y
zero in the non—-maneuvering case in any sense.

Relative poor observability of the range variable in the MP

system may be the reason why the range error exhibits some oscillatory

property in Figure 11.

.................... . - . . B I T S
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A more desirable convergence is shown by tiie mixed coordinates if
aY # 0, Q=0 (Figure 10). Note that the vertical scale in the MP
system is different than the other two coordinates.

Careful comparison of the observability tables and corresponding
estimation error figures shows that they are very closely related,
i.e., the fast infcrmation growth interval corresponds to the abrupt
error descreasing interval. Figure 13 shows that velocity errors
converge to zero nicely for both mixed and rectangular coordinates
when maneuvering exists. This may be due to the strong observability
cf these variables. Note that initial velocity error (1 m/s ~ 2kts)
does not decrease satisfactorily when aY = 0 for both coordinates.

The velocity variables are not available exclusively for the MP

coordinates.
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Observability analysis in terms of measurement noise R is shown
in Tables 8, 9 and 10 with corresponding range error (er). As
expected, observability decreases as the noise level increases.
Particularily observability of the target speed becomes very poor when
high noise level is presented.

Camparing the range errors for all coordinates shows that mixed
coordinates exhibit the smallest errors even with the high noise
level. This may be an extremely important characteristic from
practical point of view.

Due to the fast information pick-up in the early stage, range
error drops very quickly for the mixed coordinates. For example,
within one minmate, e. drops around 10% of its initial error and stays
within that value in low noise (R=(0.2°)%). However, the rectangular
coordinate case takes five mimutes and the MP takes more than twenty
minutes. Even though the system observability is high in the MP
coordinates, range error shows quite unstable behavior. This trend
takes longer as the noise level becames higher (Table 9). Analysis
shows that the instability is due to the to the instability in Pt.

Table 11 shows the effect of the data sampling interval for the
mixed coordinates. From a standard 10-second interval, it is extended
to 20 seconds or is shortened to 2 seconds. More frequent measurement

(shorter T) makes the system more ovbservable. Specifically,
cbservability of the speed variable in the maneuvering direction (y-

direction here) improved significantly.
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However, due to data processing speed limitation of the on-board
I processor as well as other limitations, ping interval for active SONAR .
or random process correlation time, for example, one camot

practically decrease the sampling interval arbitrarily in the underwater

F.O N s+ 44 e

tracking system.
One more point which has not appeared here is the effect of the
magnitude of the maneuvering. Sensitivity analysis shows that once
i maneuvering exists its magnitude does not give any significant

influence to the information content. This also may be a very

valuable finding from the economic and tactical standpoint.
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4-3. Information and Sensor number, Measurement

Policy in Array SONAR Tracking ;‘_h

Al

Another application area where system observability is crucially

important in the ocean envirorment is the underwater SONAR tracking E__:;
problem. Here, one is interested in determination of the number of E
sensors and their deployment configuration such that the system is r

deterministically observable as well as stochastically more strongly : e

observable. One also wants to decide what kind of quantity should be
measured to maximize the collected information with the given
corditions. The last point is more important for our purpose here
since even with the same number of sensors and with the same

deployment structure, measurement of different quantities results with

different degrees of observability. el

We have already analyzed the same problem from the

determminisitic point of view in Chapter Two. We observed that the

system is observable except when we measured one absolute time delay

with one sensor (1Slabs.D). The other cases are all observable at
least in a wide sense. See Figure 3 for the sensor-target :ﬁt'_ﬁi‘:
configuration. We observed, also, that Doppler measurement increases -
the measurement quantity with a factor of fc (carrier frequency)

compared to the delay measurement.
Here the same problem is analyzed stochastically. Seven

measurement policies are chosen as in Chapter Two for the linearily
deployed sensors. The standard extended Kalman filter of the discrete

type is used [36].




x The other parameters used are as follows:

measurement sampling interval; T = 15 sec.
a initial condition of x (when no initial noise is added) ,
(7.(0)] (10000 m ]
X
VX(O) -15.433 m/s ( “30 knots, approaching)
%(0) = ry(O) = | 4000 m ,
G 0 0 m/s
Y( ) /
- cl(O) 1500 m/s
L<':‘2(0) 1500 m/s )
where xi(O) is assumed N (Qi(O), Gi), i=1, ... 6, such that
04 = ox = 100 m,
02 = OVx = 0.15 m/s ,
;‘ oy = oy = 40 m,
g, = °Vy = 0.1 m/s,
Oy = Ogp = 5 m/s ,
Og = Ogp = 5 m/s .

The measurement noise assumed is also a Gaussian sequence with

covariance

sec ,

sec ,

sec ,

sec ,
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g
u.:-":-l
and Po = I is assumed to be kﬁui
( Po) x 10° ) by
X e
2 2 :,\._\.'
e
on(O) X 5x10 ::iﬁ
P = ?0) x 10% ey
o Yy fom i
o] 2(0) X 5x102 \523
vy ” R
%,(0) x 10 T
2 e
OCZ(O) x 10 J E:j*
f_ = 3500 Hz (modulation carrier frequency) , At
Z1 = 2000 m (intersensor distance of S, and sa),
22 = 200C m (intersensor distance of Sy and 52). "
With the above parameter 20 runs are averaged. Table 12 shows ‘5
the mutual information content for the whole system for wvariocus P

measurement schemes. Clearly an increased number of deployed sensors

."
!..
o
A

.

yields stronger observability. In spite of the largest observation

[
b

4'-I !
o e
s .

., .'.
'e's wt,

P

magnitude (notice that absolute delay is much larger than relative
delay magnitude for far-field observation) 1Slabs.D system shows the -

weakest observability due to the unobservable state Xg (=cl).

LV
'L

Inspection of the table shows also that the degree of the

observability can be approximately categorized in three groups. e
1. 1Slabs.D (Obs. = 9.2) ;2;-.‘;;._
251D (10.5) NN

251P (13.4)

N

~T A

N

.

\'~-‘

.......... .. . . T T T I U L)
............................................... AR .'_._-_..‘._.... RN S
....................... LRI . " e . . e - A ™ W

VIR APRAPEA R S S APRALY §.§ 0 DS PR WAL WY, S AV VR VAR Sy Sy L'L-'_.‘-':‘-\A'\‘. o e N
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2. 2S1D1P (20.6)
3s2D (19.7)
383D (21.2)
3. 38S2D1P (30.8)

When only delay or Doppler is measured for one or two sensors,
the system still remains in a weakly observable status even when the
system is deterministically observable (the first group).

Stronger information is obtained when measuring more than one
quantity, i.e., both delay and Doppler with two sensors (2S1D1P}, or
when one more sensor is added to the measurement of only one quantity
(3S21D, 3s3D) (the second group).

Information does not increase, appreciably, with the addition of
the same kind of measurement quantity as can be seen. This may be
caused by the fact that the third delay depends entirel on the first
two delays. Only two delays are independent in the three-sensor delay
measurement.

Stronger and more significant information is obtained when one
observes both delay and Doppler with three sensors (the last case).

It is also of interest that most of the information is collected
during the very early stages of the cbservation, i.e., when the first
few sets of measurement data are processed.

Information content for the individual measurement policies is
shown in Table 13 through 19. In the case of 1Slabs.D (Table 13)

mutual information about c1 is zero due to the unobservability of this
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SAERLME ST Lot Sd S T S S N
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variable. Observability of V! vY ard t:2 is relatively poor compared
to the range variables rx and ry.

Here one can easily understand the obvious advantage of the
matual information approach (in Shannon's sense) compared to the

Fisher information matrix approach. In the current method, the

information content of the deterministically observable individual
state estimate is calculated as well as the total system information
_ even if some states are unobservable. This is not possible in the
Fisher information approach when the information matrix is singular
( Compare Table 12 and Table 20 ).
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Table 13, Observability : 1Slabs.D

( :u ) Total T, Ve ry VY ¢, c,

0.25 4.35 3.11 0.00 0.03 0.00 0.0 0.01

0.50 5.03 3.27 0.00 0.03 0.00 0.0 0.01

0.75 5.42 3.32 0.00 0.03 0.00 0.0 0.0z

1.00 5.70 3.33 0.01 0.04 0.00 0.0 0.01

1.25 5.92 3.34 0.01 0.06 0.00 0.0 c.01

1.50 6.14 3.35 0.02 0.13 0.00 0.0 0.01

1.75 6.48 3.44 0.03 0.36 0.00 0.0 c.01

2.00 6.99 3.65 0.04 0.78 0.01 0.0 0.02

2.25 7.57 3.94 0.04 1.27 0.01 0.0 0.02

2 2.50 8.12 4.19 0.04 1.73 0.01 0.0 0.03
:; 2.75 8.52 4.33 0.04 2.04 0.01 0.0 0.03
3.00 8.64 4.29 0.05 2.10 0.01 0.0 0.03

3.25 8.72 4.26 0.06 2.13 0.02 0.0 0.03

3.50 8.80 4.22 0.08 2.16 0.02 0.0 0.04

3.75 8.87 4.19 0.10 2.19 0.03 6.0 0.04

4.00 8.94 4.15 0.12 2.21 0.04 0.0 0.04

4.25 9.00 4.11 0.13 2.23 0.05 0.0 0.04

i‘ 4.50 9.06 4.07 0.15 2.26 0.05 0.0 0.05
. 4,75 9.12 4.03 0.16 2.28 0.06 0.0 0.05
5.00 9.17 3.99 0.16 2.31 0.08 0.0 0.05
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Table 14, Observability : 2S1D

X SR

‘- t Total r, v, rY vy c, <,
i! 0.25 5.67 0.19  0.00 0.34  0.00  0.29  0.33
0.50 6.07  0.23 0.00  0.36  0.01 0.30  0.33
. 0.75 6.62 0.60 0.00  0.37  0.02 0.35  0.39
.5 1.00 7.58 1.07 0.01 0.39 0.03 0.40  0.47
{fﬁ 1.25 7.99 1.26 0.01 0.46 0.04 0.43  0.50
- 1.50  8.15 1.3  0.00  0.50  0.06  0.44 0.5
&E 1.75 8.34 1.45 0.02 0.52 0.07 0.44  0.51
i 2.00 8.63  1.54  0.02  0.57  0.09  0.46  0.54
- 2.25 8.83 1.66  0.03 0.66  0.44 0.47  0.55
E! 2.50 8.95 1.69 0.04 0.72 0.13 0.47  0.55
o
E{ 2.75 9.11 1.76  0.04 0.81 0.15 0.47  0.55
- 3.00  9.22 1.82  0.05  0.86  0.17  0.47  0.55
!! 3.25 9.47 1.91 0.07 1.06  0.19 0.48  0.57
;? 3.50  9.66 1.97  0.08 1.20  0.21 0.49  0.57
3 3.75  9.86 2.06 0.09 1.32 0.24 0.49  0.58
Fﬁ 4.00  9.96 2.11 0.11 1.34 0.26  0.49  0.58
= 4.25  10.0% 2.15 0.13 1.36  0.28 0.49  0.58
ii 4.50  10.15 2.16  0.14 1.38 0.29 0.50  0.58
- 4.75  10.27 2.19 0.16 1.41 0.31 0.49  0.57
5.00  10.48 2.23 0.18 1.50  0.33 0.50  0.58
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Tzble 15, Observability : 2S1P
t Total T, Vg rY vY 4 <,
0.25 6.65 0.59 0.03 0.15 0.00 0.23 0.20
0.50 7.22 0.84 0.05 00.16 0.00 0.26 0.25
0.75 7.94 1.28 0.11 0.18 0.01 0.39 0.34
1.00 8.57 1.67 0.15 0.21 0.01 0.45 0.37
1.28 9.12 1.82 0.20 0.27 0.02 0.49 D.40
1.50 9.47 1.98 0.24 0.34 0.03 0.50 0.41
1.75 9.81 2.13 0.27 0.47 0.03 0.50 0.41
2.00 10.09 2.24 0.31 0.64 0.04 0.53 C.43
2.25 10.32 2.34 0.36 0.81 0.05 0.53 0.43
2.50 10.56 2.46 0.40 0.90 0.05 0.55 0.44
2.75 10.81 2.56 0.44 0.97 0.06 0.56 0.45
3.00 11.25 2.70 0.48 1.18 0.07 0.56 0.46
3.25 11.45 2.79 0.51 1.29 0.07 0.56 0.46
3.50 11.69 2.90 0.54 1.36 0.08 0.56 0.468
3.75 12.12 3.02 0.59 1.48 0.09 0.56 0.46
4.00 12.36 3.15 0.63 1.55 0.10 0.56 0.46
4.25 12.63 3.25 0.617 1.63 0.11 0.56 0.46
4.50 12.89 3.32 0.72 1.70 0.13 0.56 0.46
l 4.75 13.11 3.39 0.78 1.73 0.14 0.56 0.46

5.00 13.44 3.48 0.84 1.31 0.15 0.56 0.46

.....................................
.........
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Takle 16, Observability :  2S1D1P
I
. t Total r, vx ry VY c:1 c2
| 0.25  12.31 0.93 0.03 0.55 0.00 0.53  0.65
0.50  13.52 1.19 0.07 0.79 0.02 0.64  0.65
0.75  14.57 1.47 0.21 1.12 0.06 0.65  0.67
" L.00  15.53 1.78 0.32 1.47 0.14 0.66 0.8
1.25  16.40 2.01 0.46 1.71 0.25 0.66  0.29
1.50  16.91 2.13 0.52 1.82 1.82 0.3  0.70
( 1.75  17.34 2.25 0.58 1.88 0.46 0.66  0.73
2.00 17.75 2.37 0.65 1.95 0.53 0.67 0.71
2.25  18.15 2.48 0.73 2.00 0.57 0.67  0.72
i 2.50  18.41 2.55 0.75 2.00 0.69 0.67 0.72
: 2.75  18.65 2.62 0.79 1.99 0.62 0.67  0.72
) 3.00  18.90 2.70 0.82 2.00 0.65 0.67 0.72
! 3.25  19.20 2.81 0.83 2.07 0.75 0.67 0.73
, 3.50  19.40 2.90 0.83 2.08 0.77 0.67  0.72
i 3.75  19.58 2.98 0.84 2.09 9.80 0.66  0.72
g 4.00 19.70 3.09 0.65 2.12 0.84 0.66  0.72
: 4.25  19.99 3.20 0.86 2.15 0.89 0.66  0.72
: 4.50  20.18 3.30 0.87 2.18 0.93 0.66  0.72
: 4.75  20.39 3.42 0.90 2.22 1.00 0.66  0.72
5.00 20.64 3.53 0.94 2.27 1.09 0.66  0.72

.....................................................................
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Table 17, Observability
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Table 18, Observability : 3S3D

t Total rX vX ry Vy c1 5
0.25  13.10 0.21 0.00 0.36 0.00 1.48  0.35
0.50  14.00 0.40 0.00 1.44 0.06 1.51  0.46
0.75  17.02 1.58 0.01 1.97 0.12 1.1  1.28
1.00 17.86 1.96 0.01 2.25 0.20 2.12  1.54
1.25  18.43 2.26 0.03 2.50 0.25 2.30  1.81
1.50  18.79 2.39 0.04 2.65 0.47 2.46  1.92
1.75  18.94 2.42 0.05 2.69 0.58 2.43  1.93
2.00  19.39 2.72 0.06 2.94 0.68 2.47  2.06
2.25  19.60 2.74 0.07 2.97 0.77 2.46  2.05
2.50 19.74 2.75 0.08 3.00 0.87 2.43  2.03
2.75  19.86 2.76 0.09 3.02 0.96 2.39  2.01
3.00  19.99 2.78 0.11 3.06 1.04 2.35  2.00
3.25  20.14 2.80 0.13 3.09 1.12 2.30  1.98
3.50  20.25 2.81 0.14 3.11 1.19 2.26  1.96
3.75  20.43 2.85 0.17 3.15 1.24 2.21  1.95 ;555;
4.00  20.59 2.90 0.19 3.21

4.25  20.77 3.01 0.21 3.29

4.50  20.93 3.04 0.24 3.32

4.75  21.06 3.06 0.26 3.35

..............................
......
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Table 19, Observability : 3S2D1P
’

t Total r, Vi rY VY c1 5,

| 0.25  21.74 1.73 0.06 1.46 0.00 1.48  0.84

f 0.50  22.86 1.93 0.12 1.64 0.18 1.61  0.94

: 0.75  23.82 2.13 0.19 1.87 0.39 1.81  1.16

i 1.00  24.70 2.41 0.25 2.21 0.59  2.05  1.38
1.25  25.50 2.63 0.35 2.47 0.77 2.25  1.64
1.50  26.09 2.78 0.44 2.62 0.94 2.35 1.78

{ 1.75  26.58 2.94 0.50 2.71 1.10 2.42  1.84
2,00  27.07 3.08 0.59 2.89 1.23 2.46  1.98

. 2.25  27.43 3.19 0.67 2.97 1.34 2.46  1.98

! 2.50  27.84 3.29 0.74 3.06 1.44 2.47  2.0C

- 2.75  28.15 3.39 0.81 3.14 1.54 2.45  2.01

i 3.00  28.49 3.51 0.85 3.24 1.63 2.45  2.02

‘ 3.25  28.81 3.64 0.87 3.36 1.72 2.47  2.C2 "
3.50  29.10 3.78 0.83 3.49 1.81 2.49  2.04 \i:i
3.75  29.38 3.9 0.90 3.60 1.88 2.49  2.06 ff?31
4.00 29.68 4.05 0.92 3.74 1.95 2.50 2.09 f“f%
4.25  29.96 4.19 0.95 3.88 2.01 2.51  2.11
4.50  30.22 4.32 0.98 3.98 2.07 2.48  2.12

: 4.75  30.49 4.46 1.03 4.09 2.13 2.45 2.14

- 5.00  30.76 4.60 1.10 4.20 2.20 2.42  2.15

-
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sore unobserveble states. In this case the total or individual state
information cannot be computed because of this singularity. In that *

case even Iidentification of unobservable states is not generally
possible. To identify those unobservable states usually intuition,
experience or trial and error are used. All the other six measurement
policies (Tables 14 to 19) show that the system is observable even
though the degree of observability is different. As the number of
sensors increases unobservable or weakly observable states become nmoro
strongly observable. Specifically, informaticn growth for the soxd
speed variables <, and Cy is significant when the three-sensor policy
is used regardless of measured guantity.

Strong system observability for the 3S2D1P case is due to the
strong individual state information for all six states.

The effects of filtering errors due to the different degrees of
information content is seen from Figure 14 through 16 for range T
target speed Vy' and sound speed Cyo respectively.

Roughly, increasing the number of measured quantities with more
sensors gives a smaller filtering error because of the strorger
observability. With an initially given 1,000 m range error, combine
the measurement of delay and Doppler vyields significantly small
errors. The errors stay within few ten meters in 5 minutes final time

for both 2S1D1P and 3S2D1P cases. 3S2D1P case, particularly, shows

very desirable characteristics as can be seen from Figure 14. It is

important to note here that very undesirable properties (in the sense

that large error or oscillation of range error results) appear when
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measuring only time delay. The same figure, also, shows large (more
than initial error) errors in the case of 2S1D, 232D, ond some

overshoot appears for 1S1D even with reasonably good range

information. Notice that 1S1D has only limited usage, e.g., target-

sensor synchronization or in case of active SONAR situation.

One now can say that Doppler measurement which is combined with
proper delay measurement is crucial for good range estimation in SONAR
tracking. 57:;

Figure 15'shows target velocity error with an initial 2 a/s { 74 ;;7
knots) error. Here one can observe some different aspects as compared
with the range error. I.e., no matter what quantity is measured, the B
system exerts less velocity error when more sensors are included with
increased number of measured variables. Figure 15, also, shows that

the magnitude of this error can be divided in three groups,exactly, as S

the total system cobservability is divided. The first group (151D,

2S1JD, 2S1P) again shows the poorest performance and the third group ;ﬁj{
i
(3s2D1P) is the superior group. STfT
1S1D shows some oscillatory properties here, also. Extendec j.
observation beyond five minutes showed that the error in 231DIP case Efii

decreases from around 5 1/2 minutes.

Figure 16 shows the evolution of the sound speed error for an

initially given 50 m/s. This value may be slightly larger than the L;(;
practical situation.
However, one can easily recognize three distinct groups of error

trends. These three groups exactly coincide with the grcups which are

............
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made in the system observability. I.e., 1S1D, 251D, 2S1P group shows
the poorest performance and 2S1D1P, 3S2D, 3S3D group shows the medium *
range error and, again, 3S2D1P shows the superior performance. 1S1D
case shows a mild overshoot with the weakest information.
For comparison, a discrete version of the Fisher information
matrix (3-65) is computed for the selected five observation policies.

k A - ~ -
Tk1) = T 7T DE (R} R 7 (i), (4-16)
1=

Here, iterative modification of (3-67),

T(k+1,1) = ®°T (k+1,k) I(k,1) 73 (ke1,k) +

HY(2(k+1)) R *(k+1) H(X(k+1)), (4-17)

hi is used instead of (4-16). This is shown at Table 20. Matrix I(k,1)

remains singular over the entire observation period for the 1S1D

measurement case and remains nonsingular with shown magnitude of

determinant in other cases.

Geoy A

v ye

Comparison of this table with the total information contents

{(Table 12) will reveal that the two approaches exactly correspond to
each other for the chosen five measured policies.

Superiority of the measurement 3S2D1P system is shown here, also,

Thus one can conclude this section as follows: at least two sensors

are required for the system to be observable. 3S2D1P measurement
gives the most desirable performance in all cases. If only two

sensors are available, a combination of delay and Doppler (2S1D1P)
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measurement is strongly recommended. For small range error, Doppler A

measurement is crucial. For small target velocity and sound speed f .

P
o«
» 'v'v'

errors, include as many sensors as possible to make strong system

-
¢
'I
b %
et

'I

o

E“

observability.

b

1S1D policy is not recommended except in special cases as in the

i-f." o

experimentally well synchronized case [64] or in an active SONAR

system.
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Observability (singularity of Fisher information

matrix)

meas.

1S
labs.D

2S1D1P

352D

3S3D

3S2D1Pp

(min.)
0.0

0.5
1.0
1.5
2.0
2.5
3.0
3.5
L.o
b.s
5.0

!

4.9x10'21

4.0x10'15

3.7x10~7

8.1x10

2.6x10°

7.6x10"

b oe2

11

3.8x10"

2.0x10"10

6.3x10°7

{

5.3x10'17

1.1x1077

1.2x1072

* «— implies unobservable period
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o CHAPTER 5: SUMMARY AND CONCLUSION
- y
A \::':‘;-\.
' In this dissertation, system observability is studied for both ti\it
\.:,:.;_
Lt
deterministic and stochastic cases. ndnl
Since nonlinear observability for deterministic systems is a ke
geometric nonlinear functional property, the inverse and implicit R

function theorems are useful. By modifying the global implicit-
function theorenr, sufficient conditions for the given nonlinear

function to be globally homeomorphic are derived. From an

applicational point of view, the nonzero Jacobian condition, which can
be related to n-1 dimensions for the special case, provides the

connectedness condition for every state to be connected to th

measurement space. However, a finite-covering condition must be

tightened to a one-covering condition then by which univalence of the ‘ f;m;.

.:_:.r:_:.

connectedness can be guaranteed. tib}:
Before these two conditions can be applied to the system Gg}

equations, differentiation of the system observation equations with ey

respect to t, and substitution of the lower—order derivatives of

observation equations to the higher order up to (n-1)-th derivatives R
must be preceded.

Depending on the satisfication of the conditions, observability

in the strict sense, observability in the wide sense, and unobservable AN

states are determined.

...............

.............
....................................
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Application of this method is demonstrated by several examples.
Especially, two practical problems in the ocean environment where the
observability is very important are dealt with here.

Bearing-only-target tracking problem, which is described by, a
so-called, mixed-coordinate system, is analyzed. The fact that this
system is only observable when relative maneuvering exists and
unobservable when non-maneuvering is proven again, and specialh cases
of interest are studied. In the linear-array SONAR problem, at least
two sensors are necessary for system observability. Doppler
measurement scales up the delay measurement quantity by the factor of
modulation carrier frequency.

For stochastic system observability, a new approach is
attempted. Instead of using the classical Fisher information matrix,
mitual information (in the Shannon sense) is computed and utilized as
a criterion for determination of the degree of the observability.
Camputed here is the amount of information about one random process
(state xt) contained in another random process (observation Yt)'
Since the mutual information is defined as the uncertainty or entropy
difference between the sender and the receiver of the information,
from information theory, it is required to know two entropies H(xt)
and H(x.ly,).

Fortunately, entropy and variance have one-to-one relationship
except in a few special cases. So, mutual information can be computed
from two covariances - a priori and a posteriori statistical

covariances - as far as both are available. Since, in practice,
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higher moments are required in the evaluation of the second moment of
the density approximation must be used to obtain it. Any well-
developed appraximated nonlinear filter algorithm can be used. Since,
covariance in this case does not fully characterize the statistics of
the state x, mutual information I (X,.v,) is used instead of I(x,.y,).
The relationship between the deterministic observability rank
condition and the stochastic observability in terms of mutual
information is discussed for the linear system.

Obvious advantages of the mutual information approach over the

Fisher information approach in connection with practical application

aspects are:

1) System observability computation is possible even in the case
that some states are uncbservable. This is not pessible in the
Fisher information due to the singularity of the observability
matrix.

2) Ider;tificntion of unobservable states is immediate by just
indicating the states whose information do not grow. But this is
very difficult in the Fisher information where they can only be
done by empirical guessing or trial and error [71].

3) Both mutual information and Fisher information consider both
systemn and measurement noise effects, theoretically. But the
Fisher information matrix in the applicational form only
accommodates measurement noise,

4) The Fisher information matrix for the nonlinear system,

traditionally, uses the first-order linearization. But Shannon
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information seems more readily calculated according to

e higher-order state estimation approximation.

The relationship between the Fisher information and the Shannon

mutual information is discussed for a special form of nonlinear

systen. .
According to the result of the mutual information derivation, it
is computed and campared for the three practical examples. Simple ,

linear example, falling body, is followed by the two nonlinear
simlation results which are the same system model used in the
deterministic observability.

In the BOT system, three coordinates; rectangular, modified
polar and mixed coordinate system are compared.

Information structure analysis shows that both range and target
speed are weakly observable when the observer does not maneuver
relative to the target for all three coordinates. Once meneuvering
exists in any direction its magnitude has not much effect on
observability. It is observed that system dynamic noise reduces
collected information significantly.

Measurement noise and data sampling intervals also have certain
effects on observability. Their effects are analyzed.

Analysis always shows that poor system observability is followed

by large filtering error and vice versa. In spite of no specific

OO
o o . . o
] ' AT

superiority in its state observability, mixed coordinates show the

most desireable performance in all cases.

...............................................
...............................
...........................
..........
..................................
..................
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Modified polar coordinates show some unstable characteristics in

spite of its strong observability magnitude.

At least two sensors are required for every state to be
observable in the array SONAR tracking problem.

3S2D1P measurement policy is the most recommendable if up to
three sensor deployment is available.

If only two sensors are available, a combination of delay and
Doppler (2S1D1P) measurement is the most recammendable policy. For
only small range, Doppler measurement is crucially important. On the
other hand, for small target velocity and sound-speed errors, include
as many sensors as possible to make the system more strongly
observable since those errors are porportional to the whole system
observability.

1S1D is not recommendable except for particulary well-
synchronized experimental cases.

As a result, for the deterministic observability problem, two
simple and convenient conditions - connectedness and univalence - are
developed.

For stochastic observability, it is found that the mutual
information approach is a valid alternative which seemingly can
determine the degree of observability more completely than the
classical Fisher information matrix.

The effect of the deterministic observability to the stochastic
observability and related topics are analyzed for the BOT and array

SONAR tracking simulation.




e e S I e A A 0 e e 0 g e g g e e oo —

.........................

155

T YN

- REFERENCES

JSOERYC

1. Palais, R. S., Natural Operation of Differential Forms, Trans.
Amer. Math. Soc., Volume 92, pp 125 - 141, July 1959.

Athans, M., Falb, P.L., Optimal Control, McGraw-Hill Inc., N.Y.,
1966.

BRI AP
LY L D T S S
N

3. Chen, C. T., Introduction to Linear System Theory, Holt, Rinehart
and Winston, N.Y., 1980.

. 4. Lee, E.B., Marcus, L., Foundations of Optimal Control Theory,
S5 John Wiley & Sons, N.Y., 1967.

&‘ 5. Hwang, M., Seinfeld, J. H., Observability of Nonlinear Systems,
- J. of Opt. Theory and Application, Volume 10, No. 2, pp €7-77,
1972.

6. Hermann, R., Krener, A.J., Nonlinear Controllability and
Observability, IEEE Tr. Auto Con. Volume AC-22, No. 5, pp 728-
740, Oct. 1977.

7. Nijeijer, H., Observability of Autonomous Discrete Time
Nonlinear Systems. A Geometric Approach, Int. J. Control, Volune
36, No. 5, pp 867-874, 1982.

8. Fliess, M., A Remark on Nonlinear Observability, IEEE Tr. Auto.
Con., Volume AC-27, No. 2, pp 489-490, April 1982.

9. Schoenwandt, S., On Observability of Nonlinear Systems, 2nd IFAC
Symposium, Prague, Czechoslavakia, June 1970.

10. Kostyukovskii, Y. M., Observability of Nonlinear Controlled
System, Automation Remote Control, Volume 9, pp 1384-1326, 1968.

11. Kostyukovskii, Y.M., Simple Conditions of Observability of
Nonlinear Controlled System, Automation Remote Control, Volume
10, pp 1575-1584, 1968.

-" ’
-

12. Griffith, E.W., Kunmar, X.S.P., On _the Observability of Nonlinear
Systems: I, J. of Math. Ana. and Appl., Volume 35, pp 135 - 147,

1971. L %
13. Kou, S. R., Elliott, D.L., Tarn.T.J., Observability of Nonlinear R
Systems, Info. and Control, Volume 22, pp 89-99, 1973.

-
i)

A
LI T
W 2 2

TN T e T T T

|
Lt Lt e LT e T e e T T e s s hd

et A, . T e N, W T e e e e e e e e e e e e S et -
PV P P ULV D DY WA PAPI Sy DL DU IRLIP S DU RPN P R DU RSN PP DN PN I PP DU P P DS IR AT, P it intetond it i RTINS




T YR, e T I T I T e

156

14, Sirgh, S. N., Observability in Nonlinear Systems with
Unmeaswrzble Inputs, Int. J. Sys. and Science, Volune 6, No. 3,
Dp 723-732, 1975.

15. Fujisawa, T. Kuh, E.S. Some Results on Existence and
Uniqueness of Solutlon of anllnear Networks, IEEE Tr. on Circuit
Th., Volume CT-18, No. 5, pp 501 - 506, 1971.

16. Fitts, J. M., On the Observability of Nonlinear Systems with
Applications to Nonlinear Regression Analysis, Info. Science,
Volume 4, pp 129-156, 1972.

17. Galperin, Ye. A., On _the Observabiity of Nonlinear Systems, Eng. o
Cybernetics, Volume 1, pp 338-345, 1972. ‘ PR

18. Sen, P., Chidambara, M.R., Cbservability of a Class of Nonlinear
Systems, IEEE Tr. Auto. Con., Volume AC-25, No. &, pp 1236-1227,

1980.
19. RKuh, S., Hajj, I. N., Nonlinear Circuit Theory; Resistive v

4

Networks, Proc. of IEEE, Volume 59, No. 3, pp 340 - 355, 1971. -
-

1

20. Chua, L.0., Lam, Y.F., Global Homeomorphism of Vector-Valucd
Function, J. of Math Ana. and Appl., Volume 329, pp €600 - 624,
1972.

21. Kaplan, W., Advanced Mathematics for Engineers, Addison-Wesley - :,;1’
Pub. Company, Calif., 1981. w

22. Gale, G., Nikaido, H., The Jacobian Matrix and Global Uniwvilence ;ﬂf;f
of Mapping, Math. Annalen, Volume 159, pp 81-93, 1965. e

23. Kalman, R.E., On the General Theory of Control Systems, Proc. of

the 1st IFAC Congress, London, 1961. E;i:?
24. Oden, J.T., Applied Functional Analysis, Prentice-Hall, NJ, 1979. :fﬁ;}
25. Ortega, J. M., Rheinboldt, W.C., Iterative Solution of Nonlirear T

Equations in Several Variables, Academic Press, N.Y., 1971. fk"jj
26. Burkill, J.C., Burkill, H., A Second Course in Mathematical

Analysis, Cambridgje Univ. Press, 1970.

27. Nikaido, H., Convex Structure arnd Econcmic Theory, Academic -
Press, N.Y., 1972.

28. Royden, H.L., Real Analysis-2nd Edition, MacMillan Publishing
Company, N.Y., 1968.

IPCIAER S e e et e .
PRI A VAL PGP, WP L P L WAL AP, L APUE A . . WP UL AL P




—r ” — - > .- oy o _—
LA S A S A A I A AR L AR i v v A% o e ot N A eh i e e g ]

157 fij
29. Chewvuilley, C., Theory of Lie Groups, Princeton University Press, :;,
N.J. 1948. O
l'*t
30. Browder, F.E., The Solvability of Nonlinear Functioral Equations, Eﬁ}
Duke Math J., Volume 30, pp 557-566, 1963. e
31. Sutherlandd, W.S., Intrcduction to Metric and Topolugical Space, ﬁj:
Oxford University Press, London, 1981. -
32. Duren, D.L., Univalent Functions, Springer-Verlag, N.Y., .J€3. ;
33. Hwang, C.S., Mohler, R.R., Nonlinear Observability and Mired
Coordinate Bearing Only Signal Analysis, Proc. 23rd Conference con
Decision arnd Control, Las Vegas, 1984. -
34. Maybeck, P.S., Stochastic Models, Estimation and Control, Vol. 2
Acaderic Press, N.Y., 1982.
35. Acki, M., Optimization of Stcchastic Systems, Academic Press, .
N.Y., 1967. ’
Q-“_«.
36, Jazwinski, A.H., Stochastic Process and Filtering Theory, Eﬁ
Aczdemic Press, 1970. T
37. Ham, F.M., TOWn, R.G., Observability, Eigenvalues, and ;};
Kalman Filtering, IEEE Tr. on Aero. and Elect. Sys., Volure AFS- :
19, No. 2, pp 269-273, 1983. T
38. Taylor, J.H., The Cramer-Rac Estimation Error Lower Bound .
Computation for Deterministic Nonlinear Systems, IEEE Tr. on AR
Auto. Con., Volune AC-24, No. 2, pp 343-344, 1979. :{}
39. Chang, C.B., Two Lower Bounds on the Covariance for Nonlinear ??7
Estimation Problems, IEEE Tr. on Auto. Con., Volume AC-26, No. 3, .
pp 1294-1297, 1981.
40. Hartley, R.V.L., Transmission of Information, Bell Sys. Tech. .,
Volume 7, pp538, 1928. i
41. Hamming, R.W., Coding and Information Theory, rentice-Hall,
N.J., 1980.
42. Schroeder, M.R., Linear Prediction, Entropy and Signal Analysis,
IEEE ASSP Magazine, pp 3-11, 1984.

43, Stam, A.J., Sare Inequality Satisfied by the Quantities of

Information of Fisher and shannon, Info. and Control, Volume Z, .
Pp 102-112, 1089, o

| B
1

L e e, . . - . W T T e S P R R e -0 TN T, S
i_.-‘ YR R P A ST T T L I P A PN, VA P A AT S T P O R A T S . It
LS R L - . b, = VST PR T TR GG TR VSR PR W VR PR R A W W w R R L i S S Iy Dy




Ly i o N M - A ST AL - et AN ML Sath AR A st anen g Ty —p— DI el S A St S Al Anh A S el el b e M SR NS et Sl te e~ 5 fhe %0 S0
. PR PN RS N Pl SCial S M A S A A A A A S S Pt S - foii

T, I R

“

- 44.

< 45.

=

ii 46.
47.

X
49.

50.

51.

F

o

>

.

.
t:_

,

:

« .

at A, PR AP R A I . AR et T e e AP A R P P I A ST P R UL RPN
LIPSO P I N PSS W AP W W AT I S PRI NP P U T VIV R TR R U A TR T IR T

‘.
e

158

Hammard, P., Shanncn's Information and Fisher's Information for
Diffusion Processes, IFAC Workshop on Info. and Sys., pp 41-493, ’
France, 1977.

Duncan, T.E., On the Calculation of Mutual Informaticn, SIAM J.
Appl. Math., Volume 19, No. 1, pp 215-220, 1970. -

Ting-Ho, Lo, J., A General Bayes Rule and its Application to
Nonlinear Estimation, Info. Sci., Volume 8, pp 189-198, 1975.

Eykhoff, P., System Identification, John-Wiley & Sons, N.Y.,
1977.

Kalata, P., Priemer, P., Linear Prediction, Filter ard Smcothing:
An Information-Theortic Approach, Info. Sci., Volume 17, pp 1-14,
1979.

Shannon, C.E., Weaver, W., The Mathematical Theory of
Commnication, The Univ. of Illinois Press, Urbana, 1949.

Kullback, $., Information Theory and Statistics, John-Wiley &
Sons, N.Y., 1959.

Weidemann, H.L., Stear, E.B., Entropy Analysis of Parsmeter
Estimation, Info. and Control, Vol. 14, pp 493-506, 1969.

Kalata, ©P., Priemer, R., On Minimal Error Entropy Stochastic e
Approximation, Int. J. Sys. Sci., Volume 5, No. 9, pp 895-90€¢,
1974.

Che, S., Tomita, Y., Omatu, S., Soeda, T., Informaticn-
Theoretical Optimal Smoothing Estimator, Info. Sci., Volune 22,
pp 201-215, 1980.

Omatu, S., Tomita, Y., Soeda, T., An Alternative Expressicn of
the Mutual Information for Gaussian Processes, IEEE Tr. Info.
Theory, Vol. IT-22, pp 593-595, 1976.

Gel' Fand, I.M., Yaglom, A.M., Calculation of the Amount of
Information About a Random Function Contained in Another Such
Function, Amer. Math. Soc. Trans, Volume 2, No. 12, pp 199-24€,
1959.

Liptser, R.S., Shiryayev, A.N., Statistics of Random Preoccesses
II, Applications, Springer-Verlag, N.Y., 1978.

Wang, E., Stochastic Process in Information and Dynamical Systems
McGraw Hill, N.Y., 1971.

S T AN T




{ T T R T R N I R N P TV T g, RN C G Sk Aeg 2 B da So8 et *of S Ty

[ 3
159 T
N
o
Lipster, R.S., Shiryayev, A.N., Statistics of Random Processes I, 2
Springer-Verlag, N.Y., 1978. M
i 1
Sunahara, Y, Aihara, S., Shiraiwa, M., The Stochastic PES
Observability for Noisy Nonlinear Systems, Int. J. on Control, :.:-::;':
volume 22, No. 4, pp 461-480, 1975, SR
Bar-Shalom, Y., Multitarget Tracking-Lecture Notes in Advanced v

Topics in Modern Control, Naval Postgraduate School, 1984, (to be
published by Academic Press).

. ,;.‘_: "]

Balakrishnan, A.V., Stochastic Filtering and Control,
Optimization Software, Los Angeles, 1983.

Bryson, A.E., Ho, Y.C., Applied Optimal Control, John-Wiley &
Sons, N.Y., 1975.

Mohler, R.R., BHwang, C.S., On Observation Model Analysis for
Information, DARPA Undersea Surveillance Symposium, Monterey,
Calif., 1985.

Helton, R.A., Oceanographic and Acoustic Characteristics of the

Dabob Bay Range—Report 1300, Naval Torpedo Station, Keyport, WA.,

1976. T
Hwang, C.S., Mohler, R.R., Undersea Sound Speed and Range ¢
Estimation, Report of Dept. of Elect. and Computer Eng., Oregon *:'-J

State Univ., 1983.

Van-Tree, H.L., Detection, Estimation and Modulation Theory-
Part III, John—Wiley & Sons, N.Y., 1971,

Cozzolino, J.M., Zahner, M.J., The Maximum Entropy Distribution "—-‘1
of the Future Market Price of the Stock, Operation Research,
Volume 21, pp 1200-1211, 1973.

Carter, G.C., Variance Bounds for Passively Locating an Acoustic ."-'-}::;.-:
Source with Symmetric Linear Array, J. Acoustic Soc. Amer., o

Volume 62, pp 922-926, 1977. S

Alspach, D.L., Mohnkern, G.L., Lobbia, R.N., Sound speed
Estimation as a Means of Improving Target Tracking Performance,
AD-AO86, 603/8, Orincon Co., La Jolla, CA, 1980,

N
Urick, R.J., Principles of Underwater Sound ( 2nd.Ed. ), McGraw A
Hill, N.Y., 1975.

Gallager, R.G., Information Theory and Reliable Communication, .
John-Wiley & Sons, N.Y., 1968. R

[P
LSS




Deln a2
(. R Ih\-ud\ nﬂ’cn.c \o-\u.

Lo G LI P B . B

a2

Appendices

axl

LY
Lo

el d

™

C 4

-

-

MR A

At

Cot

“

LS




...............
P A S S T i S N
LR PSSP APRL. WL P PSL, WL IR WA W WAL W DRSO WS WPRE W 1S WA WP WAL IE WAL WS WA WA WA WA WY W SRS WP e VS, WP S W SR,

160

APPENDIX A: FUNCTIONS AND FUNCTIONAL DEPENDENCE [24],[31]

Definitions

Consider an n real valued continuous function f: RO->RE.
Function f: X->Y, XR", ¥eR" is cne-to-one from X into Y if for every
v eR(f), range of f, there is exactly one xX such that y=f(x). Then
f has a left-inverse g if and only if f is one-to-one, i.e., there

exists a function g: Y->X such that

gof = g(f(X)) = IX’

where Ix is the identity function for X. If every yY is the image of
at least one %X, then f is an onto function. In this case £ has a

right-inverse g such that

fog = f(g(Y)) = I, (A-2)

If £ is one-to-one and onto, then it is said to be an one-to-

one correspondence. A f is invertible if and only if it is one-to-one

correspondence, and thereby has a left and right inverses which are

equal. A function f is a homeomorphism if it is one-to-one

corresporndence and has continuous inverse f-l. Further, if f is

continuously differentiable, i.e., C1 function, then f is called

diffeomorphism. gl diffeomorphism means that *he inverse £ ° exists

1

and is also of class C So, the invertability property of f can be

diagrammed as follows:

....................... ORI R R IR IS Y
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—————> f has unique inverse

? ves (f invertible)
——> is £ onto?
yes no « f has only left inverses
is £ 1-1?
r—————> f has only right inverses
no yes
——> is f onto?
no « £ has rno inverse
" Functional dependence
E Real valued n function f = (fl’fz' e ,fn)T is functionally
X dependent in an open subset G of ¥ if there exists a function y from
‘Z:'- R® to R! such that
b ¥ (fl’fz"""fn) = 0 for XeG (A~3)
= Now introduce following theorems. Proof can be found in many
standard analysis text, for example [21], [24], [26].

Theorem A-~1 [26]

Let X be a subset of R°. If £: X->R® is ¢! function in an open
set GeX and the Jacobian J of f is not identically zero for ¥G, then

fl'fZ' ven ’fn are functionally independent in G.
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j; Remarks
{ DetJf(x)$0 for some x implies [15], [32] that for any interior
-jt point y of R(f) there exists a neighborhood of y where the C1 inverse
o £71 of £ is defined. Further, if £ © is unique globally, then f is a
Cl—diffeomorphism and f maps R” onto itself as a one-to-one
correspondence. If f—1 is not unique globally, then the next inverse
;E: function theorem may be used to restrict the domain X on which £ is
F
g one-to—-one.
Theorem A-2 Inverse Function theorem [26]
1 Let x be an interior point of a set X in R and suppose the
.{% function £:X->Y, YeR" satisfies the following:

i) f is a class CI.

. ii) det Jf(x)%0,

then, there exists an open set U containing x such that the

1; restriction of £ to U, flU is one-to-one. The inverse £ * is also C-

on the open set V=£(U).

A generalization of the inverse function theorem to the function
of the form f:RpxR?->Rm, m is not necessarily equal to n, is the

following implicit function theorem.

Theorem A-3 Implicit Function theorem [21]

Let (x,v)T, %€R" be an interior point of a set E in R%RY  and

suppose that the function f: E->R" satisfies the following conditions

e
'l‘- l'
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P

i) f(z,v) = vy,

NI
FL R B

'

L ii) £(.) is ¢! at (x,v)T.

111) detJf(x,v)#0

Then, there exists neighborhood N, R of x, v given by

2
I

[x-alx[x+a],

o)
]

[v-blx[v+b],

where a, b are proper real constant vectors, and a C1 function g: R->N

such that

X= g(Y.V) ’

-t

is the only solution lying in NxR of

v
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APPENDIX B: DETERMINATION OF THE MAXIMUM ENRTOPY DENSITY C':-.'::

-~
]
.
«
.
»

e
3
N

Determination of the maximum entropy density function is derived

()

» R)
s ’
Y o )r,

v ‘,r,r," «
LA

Lty &
.
%

next. This is useful in the computation of upper bound of the the

. N a eyt o e .
. » Vet e e Lo

information contents which is contained in the arbitrary random ;‘.j.\.l

variable or random process.

'

Consider a scalar random variable x which has density p(x), but _,‘_-'f.;:j'.

!
o

the form of p(x) is not known. Then from (3-4), '{ s

(= ]

H{x) = -/p(x)1inp(r)dx. (B-1)

" - QO
One wants to find p{x) which maximizes (B-1) under some constraints.

Since maximum entropy density function p(x) is changed as the range of

¥ and constraints are changed. Suppose first that;

maximize (B-1) with S

- o
| xe(0,a], s

::'.j: a SNEN
o [p(xjax =1, AN

o S
then by the help of the calculus of variations, one can compute
maximum entropy density p(x) as
? p(x) = 1/a, 0O<x<a o
{ 0, elsewhere : (B-3)

i.e., uniform density gives the maximum entropy in this case.

>
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But if the range of x is change to

MY N [af MPGFAORE R RN SRS

xef0p ],

and constraints are changed to

e AR

- Ip(x)ax = 1,
) g

| _ Fxp(x)@: = E[x] = m, (B-4)
Vo (o]

then the result is

1 X
A p(x) = —~ exp(- ——)} , 0gx<w™ (B~3)
m m

i.e., one-sided exponential density vyields the maximum entropy
density.

More generally, if
X d —, m) 1]

with the constraints
oo
[p(x)dx = 1,
g - - |

?Xp(x)dx =m,

- 00

O;(x—m)zp(x)dx =var X =g 2, (B-6)
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; then one can prove the following important result [42], [49], [67].

Theorem B-1

For X € (-%, ®) with the constraint (B-6), the maximm entropy

density function p(x) is a Guassian density.

E Proof

Problem is to show that the solution p(x) which maximizes (B-1),

i.e.,

i ©

max. {- f p(x)Imp(x)dx}
. - 0
_ with the given range and constraints have the form
i 1 (x-m) 2

p(x) = ~——35- exp{~ ———3-} . (B-7)

2no 20
i The Lagrangian M for this problem is
© ©
. M = -fp(x)1Inp(x)ax + ) [1-fp(x)dx]
n -] -00
) 2 2 a2
+ u [m-f xp(x)ax] +B[0” - S (x-m)"p(x)dx], (2-8)
-00 00
where A , u ., B are Lagrangian multipliers. Using calculus of e

) 4
. variations with T
X v ASEAA
. ¥ ‘_\'{-.‘
- .‘;&.‘.x‘c
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. R
" . -__-b.‘.
: 8¢(p) = (do/dp)dp, i
oy S
! 2 L,
. M= ~f{Inp(x) + 1 + X + uxz + g{z-m) " Jex.dp \B-3) v
-
!
g By setting §M=0, (B-9) gives AN
l 2 kar:
i’ Inp(x) + 1 + A + px + B(x-m)° = 0, (B-10) B
y -
: or L

; p(x) = exp(-1 - A - px - g(x-m)%}. (B-11)

Substitution of (B-11) into (B-6) and solving for X , y , B vields

Guassian density

| SLSEAPAPAN

p(x) = ———=3 ePp{- ~—3—-}. (B-12)

AR\ |
)
3
Q
N
Q

So, for any distribution of x next relation holds

v Te T
AN

N H(x) < Hy(x),

1/2 1n(2ﬂe0i). (B-13)

where HG(x) is a Guassian entropy. ?}:f%

HE AR

Table B-1 shows H(x) of commonly used density functions for fixed

variance. Note that the Gaussian density has the largest

entropy.

AUAENER] LRI
~

D
(]

LN

IATLILRARAY, iR

a0

E

S

Lo s
<

..........................................

..........
............

‘-.
Fa e e T e e T e T e et e S ORI
[ WERARE ISP A RONT SO A AR TN ISR RO X




Ba A AN D aCt A0 S B Al A PORACAL R S A A S

Table B-1. Intropy of common density functions.

Dist.

Gaussian

Uniform

: Triangular 1.3959 ]
% Exponential 1.0

Double 1.3466
Exponential

Rayleigh 1.3649

Pp——

Poission 1.3879
(n=10)
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